手搓传染病模型(SEIARW)

在传染病传播的研究中,水传播途径是一个重要的考量因素。SEAIRW 模型(易感者 S - 暴露者 E - 感染者 I - 无症状感染者 A - 康复者 R - 水中病原体 W)综合考虑了人与人接触传播以及水传播的双重机制,为分析此类传染病提供了全面的框架。图中的微分方程组清晰地定义了各变量的动态变化:

\(\begin{cases} \frac{dS}{dt} = -\beta S (I + kA) - \beta_w S W \\ \frac{dE}{dt} = \beta S (I + kA) + \beta_w S W - p\omega' E - (1 - p)\omega E \\ \frac{dI}{dt} = (1 - p)\omega E - \gamma I \\ \frac{dA}{dt} = p\omega' E - \gamma' A \\ \frac{dR}{dt} = \gamma I + \gamma' A \\ \frac{dW}{dt} = \mu I + \mu' A - \epsilon W \end{cases}\)

一、模型方程深度解析

  • 易感者 S:\(\frac{dS}{dt} = -\beta S (I + kA) - \beta_w S W\),表示易感者因接触感染者 I、无症状感染者 A(传播概率 k)以及水中病原体 W(传播系数 \(\beta_w\))而减少。
  • 暴露者 E:\(\frac{dE}{dt} = \beta S (I + kA) + \beta_w S W - p\omega' E - (1 - p)\omega E\),包含感染输入(来自 S 的感染)、向无症状感染者(\(p\omega' E\))和感染者(\((1 - p)\omega E\))的转化。
  • 感染者 I:\(\frac{dI}{dt} = (1 - p)\omega E - \gamma I\),由暴露者转化而来(\((1 - p)\omega E\)),并以速率 \(\gamma\) 康复。
  • 无症状感染者 A:\(\frac{dA}{dt} = p\omega' E - \gamma' A\),由暴露者转化(\(p\omega' E\)),并以速率 \(\gamma'\) 康复。
  • 康复者 R:\(\frac{dR}{dt} = \gamma I + \gamma' A\),汇总感染者和无症状感染者的康复贡献。
  • 水中病原体 W:\(\frac{dW}{dt} = \mu I + \mu' A - \epsilon W\),包含感染者和无症状感染者向水中释放病原体(\(\mu I + \mu' A\)),以及病原体的自然去除(\(\epsilon W\))。

二、MATLAB 代码实现细节

1. 参数与初始条件设置

Matlab 复制代码
md.b = 0.8;      % 易感者与感染者接触率
md.bW = 0.5;     % 易感者与水中病原体接触率
md.kappa = 0.05; % 无症状感染者向易感者传播的概率
md.p = 0.3;      % 成为无症状感染者的概率
md.omega = 1;    % 暴露者转为感染者的速率
md.omegap = 1;   % 暴露者转为无症状感染者的速率
md.gamma = 1/3;  % 感染者康复率
md.gammap = 0.03846; % 无症状感染者康复率
md.c = 0.48;     % 无症状感染者向水中释放病原体的速率
md.epsilon = 0.1; % 水中病原体去除速率
t = 1:1:100; % 模拟100天

% 初始比例
s0 = 798/800;  
i0 = 2/800;    
e0 = i0 / ((1-md.p) * md.omega); 
a0 = 0;        
r0 = 0;        
w0 = 0;        
N0 = 800;      
X0 = [s0, e0, i0, a0, r0, w0]; 
  • 详细设定传播、转化、康复等速率参数,以及初始时刻各仓室的比例和水中病原体浓度。

2. 干预措施与模拟循环

Matlab 复制代码
itimes = 4; % 增加感染者的时间点
iamounts = 6; % 增加的感染者数量
stimes = 5; % 增加易感者的时间点
samounts = 600; % 增加的易感者数量

for idx = 1:length(t)  
    currenttime = t(idx);  
    if currenttime == itimes  
        X0(3) = (X0(3)*N0 + iamounts)/N0; % 增加感染者比例
        X0(1) = (X0(1)*N0 - iamounts)/N0; % 减少易感者比例
    end  
    if currenttime == stimes 
        N0 = N0 + samounts; % 更新总人口
        X0=X0.*((N0 - samounts)/N0); % 调整各仓室比例
        X0(1) = X0(1) + samounts/N0; % 增加易感者比例
    end  
    dXdt = SEAIRW_model(currenttime,X0, md);
    X0 = X0 + dXdt';  
    % 保存结果...
end  
  • 在特定时间点(第 4 天和第 5 天)实施干预,模拟现实中的疫情变化,如突发感染事件和人口流动。

3. 模型函数定义

Matlab 复制代码
function dXdt = SEAIRW_model(t, X, md)  
    s = X(1); e = X(2); i = X(3); a = X(4); r = X(5); w = X(6);  
    dsdt = -md.b * s * (i + md.kappa * a) - md.bW * s * w;  
    dedt = -dsdt - (md.p * md.omegap + (1-md.p) * md.omega) * e;  
    didt = (1-md.p) * md.omega * e - md.gamma * i;  
    dadt = md.p * md.omegap * e - md.gammap * a;  
    drdt = md.gamma * i + md.gammap * a;  
    dwdt = (i + a * md.c) * md.epsilon - md.epsilon * w;  
    dXdt = [dsdt; dedt; didt; dadt; drdt; dwdt];  
end  
  • 严格按照模型方程计算各变量的导数,确保模拟的准确性。

三、结果可视化与分析

通过绘图展示各变量随时间的变化:

Matlab 复制代码
figure; 
plot(S, 'k-', 'LineWidth', 1.5); hold on;
plot(E, 'g-', 'LineWidth', 1.5); 
plot(I, 'r-', 'LineWidth', 1.5); 
plot(A, 'm-', 'LineWidth', 1.5); 
plot(R, 'c-', 'LineWidth', 1.5); 
plot(W, 'b-', 'LineWidth', 1.5); 
legend('S', 'E', 'I', 'A', 'R', 'W','Location','east');
xlabel('Time(Day)');
  • 易感者 S 因感染逐渐减少,暴露者 E 先升后降,感染者 I 和无症状感染者 A 呈现动态变化,康复者 R 持续增加,水中病原体 W 随释放和去除机制波动。

四、模型应用与价值

SEAIRW 模型综合了接触传播和水传播途径,适用于霍乱、伤寒等水传播疾病的研究。通过 MATLAB 代码实现,能够模拟不同干预措施下的疫情发展,为公共卫生决策提供科学依据,如优化水源管理、制定隔离政策等。模型的灵活性和可扩展性使其成为分析复杂传染病传播的有力工具。

通过深入理解 SEAIRW 模型及其 MATLAB 实现,我们能够更有效地应对水传播传染病的挑战,为保障公众健康提供坚实的支持。快来尝试调整参数,探索不同场景下的疫情动态吧! 💻🦠

完整代码 (省流版)

Matlab 复制代码
close all; clear; clc;
% # Initial parameter settings
md.b = 0.8;      % Contact rate between susceptible and infected individuals
md.bW = 0.5;     % Contact rate between susceptible and infected in water
md.kappa = 0.05; % The probability of transmission from asymptomatic to susceptible
md.p = 0.3;      % The probability of being asymptomatic
md.omega = 1;    % Transition rate from exposed to infectious
md.omegap = 1;   % Transition rate from exposed to asymptomatic
md.gamma = 1/3;  % Recovery rate of infectious individuals
md.gammap = 0.03846; % Recovery rate of asymptomatic individuals
md.c = 0.48;     % The rate of pathogens shedding into water by asymptomatic individuals
md.epsilon = 0.1; % The rate of pathogen removal from water
t = 1:1:100; % Time from day 1 to day 100 (100 days in total)

% # Initialize variables
s0 = 798/800;  Initial % proportion of susceptible individuals
i0 = 2/800;    % Initial proportion of infectious individuals
e0 = i0 / ((1-md.p *) md.omega); % Initial proportion of exposed individuals
a0 = 0;        % Initial proportion of asymptomatic individuals
r0 = 0;        % Initial proportion of recovered individuals
w0 = 0;        % Initial concentration of pathogens in water
N0 = 800;      % Initial total population
% Initial state vector
X0 = [s0, e0, i0, a0, r0, w0]; 

% 
% # Run SEAIRW model
% Pre-allocate result arrays
S = zeros(1, length(t)+ 1); % Array to store susceptible proportions
E = zeros(1, length(t)+ 1); % Array to store exposed proportions
I = zeros(1, length(t)+ 1); % Array to store infectious proportions
A = zeros(1, length(t)+ 1); % Array to store asymptomatic proportions
R = zeros(1, length(t)+ 1); % Array to store recovered proportions
W = zeros(1, length(t)+ 1); % Array to store pathogen concentrations in water

% Initialize the state at the first time point
S(1) = s0;  
E(1) = e0;  
I(1) = i0;  
A(1) = a0;  
R(1) = r0;  
W(1) = w0;  

% Define the time points and amounts for interventions
itimes = 4; % The time point (in days) to add infectious individuals
iamounts = 6; % The number of infectious individuals to add
stimes = 5; % The time point (in days) to add susceptible individuals
samounts = 600; % The number of susceptible individuals to add

% Main simulation loop
for idx = 1:length(t)  
    currenttime = t(idx);  
    % Handle intervention events
    if currenttime == itimes  
        X0(3) = (X0(3)*N0 + iamounts)/N0; % Increase the number of infectious individuals
        X0(1) = (X0(1)*N0 - iamou nts)/N0; % Decrease the number of susceptible individuals
    end  
    if currenttime == stimes 
        N0 = N0 + samounts; % Update the total population
        X0=X0.*((N0 - samounts)/N0); % Adjust the proportions of all compartments
        X0(1) = X0(1) + samounts/N ;0 % Increase the proportion of susceptible individuals
    end  

    % Calculate the derivatives at the current time point
    dXdt = SEAIRW_model(currenttime,X0, md);

    % Update the state variables
    X0 = X0 + dXdt';  
     
    % Save the results
    S(idx + 1) = X0(1);  
    E(idx + 1) = X0(2);  
    I(idx + 1) = X0(3);  
    A(idx + 1) = X0(4);  
    R(idx + 1) = X0(5);  
    W(idx + 1) = X0(6);    
end  

% # Plot results the

figure; 
% Plot the curves of each variable
plot(S, 'k-', 'LineWidth', 1.5); % Black line for S
hold on;
plot( E, 'g-', 'LineWidth', 1.5); % Green line for E
plot( I, 'r-', 'LineWidth', 1.5); % Red line for I
plot( A, 'm-', 'LineWidth', 1.5); % Magenta line for A
plot( R, 'c-', 'LineWidth', .15); % Cyan line for R
plot( W, 'b-', 'LineWidth', 1.5); % Blue line for W
% Add legend
legend('S', 'E', 'I', 'A', 'R', 'W','Location','east');
xlabel('Time(Day)');

% Define the SEAIRW model function
function dXdt = SEAIRW_model(t, X, md)  
             s = X(1);  % Proportion of susceptible individuals
             e = X(2);  % Proportion of exposed individuals
             i = X(3);  % Proportion of infectious individuals
             a = X(4);  % Proportion of asymptomatic individuals
             r = X(5);  % Proportion of recovered individuals
             w = X(6);  % Concentration of pathogens in water
      
    % SEAIRW model equations
           dsdt = -md.b * s * (i + md.kappa * a) - md.bW * s * w;  % Change rate of susceptible individuals
           dedt = -dsdt - (md.p * md.omegap + (1-md.p) * md.omega) * e;  % Change rate of exposed individuals
           didt = (1-md.p) * md.omega * e - md.gamma * i;  % Change rate of infectious individuals
           dadt = md.p * md.omegap * e - md.gammap * a;  % Change rate of asymptomatic individuals
           drdt = md.gamma * i + md.gammap * a;  % Change rate of recovered individuals
           dwdt = (i + a * md.c) * md.epsilon - md.epsilon * w;  % Change rate of pathogens in water
      
           dXdt = [dsdt; dedt; didt; dadt; drdt; dwdt];  % Combine all derivatives into a vector
end  
相关推荐
IT猿手9 小时前
基于强化学习的多算子差分进化路径规划算法QSMODE的机器人路径规划问题研究,提供MATLAB代码
算法·matlab·机器人
fie888913 小时前
基于MATLAB的转子动力学建模与仿真实现(含碰摩、不平衡激励)
开发语言·算法·matlab
机器学习之心13 小时前
基于GRU门控循环单元的轴承剩余寿命预测MATLAB实现
深度学习·matlab·gru·轴承剩余寿命预测
简简单单做算法14 小时前
基于FFT粗估计和LS最小二乘法精估计的正弦信号参数估计和检测matlab仿真
matlab·最小二乘法·参数估计·fft粗估计·ls最小二乘法
kaikaile199514 小时前
基于MATLAB的滑动轴承弹流润滑仿真程序实现
开发语言·matlab
Not Dr.Wang4221 天前
FIR数字滤波器设计的两种实现
matlab
3GPP仿真实验室1 天前
【MATLAB源码】CORDIC-QR :基于Cordic硬件级矩阵QR分解
开发语言·matlab·矩阵
三克的油1 天前
数学建模-day5
数学建模
lichensun1 天前
2026美赛A题智能手机电池耗电建模—思路全解析(含具体模型和代码)
数学建模·智能手机
民乐团扒谱机1 天前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树