MK米客方德SD NAND:无人机存储的高效解决方案

在无人机技术迅猛发展的当下,飞控系统的数据记录对于飞行性能剖析、故障排查以及飞行安全保障极为关键。以往,SD 卡是飞控 LOG 记录常见的存储介质,但随着技术的革新,新的存储方案不断涌现。本文聚焦于以 ESP32 芯片为主控制器的无人机,创新性采用 SD NAND 芯片 MKDV32GCL-STPA 芯片进行 SD NAND 存储,测试其在飞控 LOG 记录功能中的表现。​

米客方德 SD NAND 芯片特性 ​

免驱动优势:与普通存储设备不同,在该应用场景下,SD NAND 无需编写复杂的驱动程序。这极大地简化了开发流程,缩短了开发周期,减少了潜在的驱动兼容性问题,让开发者能够更专注于实现核心功能。​

自带坏块管理功能:存储设备出现坏块难以避免,而 MKDV32GCL - STPA 芯片自带的坏块管理机制可自动检测并处理坏块。这确保了数据存储的可靠性,避免因坏块导致的数据丢失或错误写入,提升了整个存储系统的稳定性。​

尺寸小巧与强兼容性:该 SD NAND 芯片尺寸小巧,对于空间有限的无人机内部布局而言,这一特性至关重要。它能轻松集成到无人机的飞控系统中,不占用过多宝贵空间。同时,其兼容性强,可与 ESP32 芯片以及整个飞控系统良好适配,无需进行过多硬件调整或优化。​

米客方德 SD NAND 测试流程

飞机通电与姿态数据采集:无人机通电后,操作人员通过翻滚机身改变飞机姿态。在此过程中,飞控系统实时采集飞机的姿态角数据。ESP32 芯片作为主控制器,负责协调各传感器数据的采集与传输,并将姿态角数据按特定格式和协议整理,准备存储到 MK SD NAND 中。​

LOG 目录创建:随着飞机姿态变化,飞控系统在 MK SD NAND 中成功建立 LOG 目录。该目录遵循特定的命名规则和文件结构,便于后续数据的有序存储与管理。目录的成功创建标志着 SD NAND 存储系统已准备好接收飞控 LOG 数据。​

数据下载与分析:测试结束后,将 SD NAND 中的日志数据下载到 Mission Planner 软件中。Mission Planner 是一款功能强大的无人机地面站软件,广泛应用于无人机数据的分析与处理。在软件中,操作人员选中 ATT 字段中的 Roll(横滚角)和 Pitch(俯仰角),利用软件的绘图功能,可清晰看到曲线随飞机实际姿态变化。这些曲线直观反映了飞机飞行过程中的姿态变化,为后续飞行性能评估和问题诊断提供了重要依据。​

测试成果与意义 ​

通过本次测试,成功验证了使用 SD NAND 替代 SD 卡记录飞控 LOG 的功能。 米客方德的 SD NAND 在整个测试中展现出稳定性能。其可靠的数据存储能力确保了飞控 LOG 数据的完整性与准确性,曲线与飞机实际姿态的紧密贴合也证明了数据记录的实时性与有效性。这一成果不仅为无人机飞控数据记录提供了新的、更高效稳定的解决方案,也为未来无人机存储技术的进一步发展与优化奠定了基础,推动了无人机技术在更多领域的广泛应用与创新发展。​


在无人机技术迅猛发展的当下,飞控系统的数据记录对于飞行性能剖析、故障排查以及飞行安全保障极为关键。以往,SD 卡是飞控 LOG 记录常见的存储介质,但随着技术的革新,新的存储方案不断涌现。本文聚焦于以 ESP32 芯片为主控制器的无人机,创新性采用 SD NAND 芯片 MKDV32GCL-STPA 芯片进行 SD NAND 存储,测试其在飞控 LOG 记录功能中的表现。​

米客方德 SD NAND 芯片特性 ​

免驱动优势:与普通存储设备不同,在该应用场景下,SD NAND 无需编写复杂的驱动程序。这极大地简化了开发流程,缩短了开发周期,减少了潜在的驱动兼容性问题,让开发者能够更专注于实现核心功能。​

自带坏块管理功能:存储设备出现坏块难以避免,而 MKDV32GCL - STPA 芯片自带的坏块管理机制可自动检测并处理坏块。这确保了数据存储的可靠性,避免因坏块导致的数据丢失或错误写入,提升了整个存储系统的稳定性。​

尺寸小巧与强兼容性:该 SD NAND 芯片尺寸小巧,对于空间有限的无人机内部布局而言,这一特性至关重要。它能轻松集成到无人机的飞控系统中,不占用过多宝贵空间。同时,其兼容性强,可与 ESP32 芯片以及整个飞控系统良好适配,无需进行过多硬件调整或优化。​

米客方德 SD NAND 测试流程

飞机通电与姿态数据采集:无人机通电后,操作人员通过翻滚机身改变飞机姿态。在此过程中,飞控系统实时采集飞机的姿态角数据。ESP32 芯片作为主控制器,负责协调各传感器数据的采集与传输,并将姿态角数据按特定格式和协议整理,准备存储到 MK SD NAND 中。​

LOG 目录创建:随着飞机姿态变化,飞控系统在 MK SD NAND 中成功建立 LOG 目录。该目录遵循特定的命名规则和文件结构,便于后续数据的有序存储与管理。目录的成功创建标志着 SD NAND 存储系统已准备好接收飞控 LOG 数据。​

数据下载与分析:测试结束后,将 SD NAND 中的日志数据下载到 Mission Planner 软件中。Mission Planner 是一款功能强大的无人机地面站软件,广泛应用于无人机数据的分析与处理。在软件中,操作人员选中 ATT 字段中的 Roll(横滚角)和 Pitch(俯仰角),利用软件的绘图功能,可清晰看到曲线随飞机实际姿态变化。这些曲线直观反映了飞机飞行过程中的姿态变化,为后续飞行性能评估和问题诊断提供了重要依据。​

测试成果与意义 ​

通过本次测试,成功验证了使用 SD NAND 替代 SD 卡记录飞控 LOG 的功能。 米客方德的 SD NAND 在整个测试中展现出稳定性能。其可靠的数据存储能力确保了飞控 LOG 数据的完整性与准确性,曲线与飞机实际姿态的紧密贴合也证明了数据记录的实时性与有效性。这一成果不仅为无人机飞控数据记录提供了新的、更高效稳定的解决方案,也为未来无人机存储技术的进一步发展与优化奠定了基础,推动了无人机技术在更多领域的广泛应用与创新发展。​


在无人机技术迅猛发展的当下,飞控系统的数据记录对于飞行性能剖析、故障排查以及飞行安全保障极为关键。以往,SD 卡是飞控 LOG 记录常见的存储介质,但随着技术的革新,新的存储方案不断涌现。本文聚焦于以 ESP32 芯片为主控制器的无人机,创新性采用 SD NAND 芯片 MKDV32GCL-STPA 芯片进行 SD NAND 存储,测试其在飞控 LOG 记录功能中的表现。​

米客方德 SD NAND 芯片特性 ​

免驱动优势:与普通存储设备不同,在该应用场景下,SD NAND 无需编写复杂的驱动程序。这极大地简化了开发流程,缩短了开发周期,减少了潜在的驱动兼容性问题,让开发者能够更专注于实现核心功能。​

自带坏块管理功能:存储设备出现坏块难以避免,而 MKDV32GCL - STPA 芯片自带的坏块管理机制可自动检测并处理坏块。这确保了数据存储的可靠性,避免因坏块导致的数据丢失或错误写入,提升了整个存储系统的稳定性。​

尺寸小巧与强兼容性:该 SD NAND 芯片尺寸小巧,对于空间有限的无人机内部布局而言,这一特性至关重要。它能轻松集成到无人机的飞控系统中,不占用过多宝贵空间。同时,其兼容性强,可与 ESP32 芯片以及整个飞控系统良好适配,无需进行过多硬件调整或优化。​

米客方德 SD NAND 测试流程

飞机通电与姿态数据采集:无人机通电后,操作人员通过翻滚机身改变飞机姿态。在此过程中,飞控系统实时采集飞机的姿态角数据。ESP32 芯片作为主控制器,负责协调各传感器数据的采集与传输,并将姿态角数据按特定格式和协议整理,准备存储到 MK SD NAND 中。​

LOG 目录创建:随着飞机姿态变化,飞控系统在 MK SD NAND 中成功建立 LOG 目录。该目录遵循特定的命名规则和文件结构,便于后续数据的有序存储与管理。目录的成功创建标志着 SD NAND 存储系统已准备好接收飞控 LOG 数据。​

数据下载与分析:测试结束后,将 SD NAND 中的日志数据下载到 Mission Planner 软件中。Mission Planner 是一款功能强大的无人机地面站软件,广泛应用于无人机数据的分析与处理。在软件中,操作人员选中 ATT 字段中的 Roll(横滚角)和 Pitch(俯仰角),利用软件的绘图功能,可清晰看到曲线随飞机实际姿态变化。这些曲线直观反映了飞机飞行过程中的姿态变化,为后续飞行性能评估和问题诊断提供了重要依据。​

测试成果与意义 ​

通过本次测试,成功验证了使用 SD NAND 替代 SD 卡记录飞控 LOG 的功能。 米客方德的 SD NAND 在整个测试中展现出稳定性能。其可靠的数据存储能力确保了飞控 LOG 数据的完整性与准确性,曲线与飞机实际姿态的紧密贴合也证明了数据记录的实时性与有效性。这一成果不仅为无人机飞控数据记录提供了新的、更高效稳定的解决方案,也为未来无人机存储技术的进一步发展与优化奠定了基础,推动了无人机技术在更多领域的广泛应用与创新发展。​

相关推荐
xian_wwq3 分钟前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电
B站计算机毕业设计之家6 分钟前
基于大数据热门旅游景点数据分析可视化平台 数据大屏 Flask框架 Echarts可视化大屏
大数据·爬虫·python·机器学习·数据分析·spark·旅游
春风LiuK15 分钟前
虚实无界:VRAR如何重塑课堂与突破研究边界
人工智能·程序人生
周纠纠26 分钟前
附录1:中文切词
python
Cricyta Sevina40 分钟前
Java Collection 集合进阶知识笔记
java·笔记·python·collection集合
歌_顿41 分钟前
Embedding 模型word2vec/glove/fasttext/elmo/doc2vec/infersent学习总结
人工智能·算法
胡萝卜3.042 分钟前
深入C++可调用对象:从function包装到bind参数适配的技术实现
开发语言·c++·人工智能·机器学习·bind·function·包装器
Echo_NGC223742 分钟前
【KL 散度】深入理解 Kullback-Leibler Divergence:AI 如何衡量“像不像”的问题
人工智能·算法·机器学习·散度·kl
愤怒的可乐1 小时前
从零构建大模型智能体:OpenAI Function Calling智能体实战
人工智能·大模型·智能体