Spark处理过程-转换算子

转换算子

转换算子用于对 RDD 进行转换操作,生成一个新的 RDD。转换操作是惰性的,即当调用转换算子时,Spark 并不会立即执行计算,而是记录下操作步骤,直到遇到行动算子时才会触发实际的计算。

从格式和用法上来看,它就是集合对象的方法。

1.map 算子

作用 :对 RDD 中的每个元素应用给定的函数 f,将每个元素转换为另一个元素,最终返回一个新的 RDD。这个函数 f 接收一个输入类型为 T 的元素,返回一个类型为 U 的元素。

格式 :def map[U: ClassTag](f: T => U): RDD[U]

示例代码

java 复制代码
import org.apache.spark.{SparkConf, SparkContext}
object MapExample {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("MapExample").setMaster("local[*]")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(Seq(1, 2, 3, 4))
    val newRdd = rdd.map(x => x * 2)
    newRdd.collect().foreach(println)
    sc.stop()
  }
}
2.filter 算子

作用 :筛选出 RDD 中满足函数 f 条件(即 f 函数返回 true)的元素,返回一个新的 RDD,新 RDD 中的元素类型与原 RDD 相同。

格式 :def filter(f: T => Boolean): RDD[T]

示例代码

java 复制代码
import org.apache.spark.{SparkConf, SparkContext}
object FilterExample {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("FilterExample").setMaster("local[*]")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(Seq(1, 2, 3, 4))
    val newRdd = rdd.filter(x => x % 2 == 0)
    newRdd.collect().foreach(println)
    sc.stop()
}}
3.flatMap算子

作用 :对 RDD 中的每个元素应用函数 f,函数 f 返回一个可遍历的集合,然后将这些集合中的元素扁平化合并成一个新的 RDD。

格式 :def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]

java 复制代码
import org.apache.spark.{SparkConf, SparkContext}
object FlatMapExample {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("FlatMapExample").setMaster("local[*]")
    val sc = new SparkContext(conf)
    val rdd = sc.parallelize(Seq("hello world", "spark is great"))
    val newRdd = rdd.flatMap(x => x.split(" "))
    newRdd.collect().foreach(println)
    sc.stop()
  }}
4.reduceByKey 算子

reduceByKey 是 Spark 中用于处理键值对(Key - Value)类型 RDD 的一个重要转换算子。它的核心作用是对具有相同键的所有值进行聚合操作,通过用户提供的聚合函数将这些值合并成一个结果,从而实现数据的归约和统计。例如统计每个键出现的次数、计算每个键对应值的总和、平均值等。

格式

def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]

参数说明:

func: (V, V) => V:这是一个二元函数,用于定义如何对相同键的值进行聚合。函数接收两个类型为 V 的值,返回一个类型为 V 的结果。例如,若要对相同键的值进行求和,func 可以是 (x, y) => x + y。

numPartitions: Int(可选):指定结果 RDD 的分区数。如果不提供该参数,将使用默认的分区数。

以下是一个使用 reduceByKey 计算每个单词出现次数的示例:

java 复制代码
import org.apache.spark.{SparkConf, SparkContext}
object ReduceByKeyExample {
  def main(args: Array[String]): Unit = {
    // 创建 SparkConf 对象
    val conf = new SparkConf().setAppName("ReduceByKeyExample").setMaster("local[*]")
    // 创建 SparkContext 对象
    val sc = new SparkContext(conf)

    // 创建一个包含单词的 RDD
    val words = sc.parallelize(List("apple", "banana", "apple", "cherry", "banana", "apple"))
    // 将每个单词映射为 (单词, 1) 的键值对
    val wordPairs = words.map(word => (word, 1))
    // 使用 reduceByKey 计算每个单词的出现次数
    val wordCounts = wordPairs.reduceByKey(_ + _)
    // 输出结果
    wordCounts.collect().foreach(println)
    // 停止 SparkContext
    sc.stop()
  }
}
相关推荐
bxlj_jcj44 分钟前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink
云资源服务商1 小时前
阿里云Flink:开启大数据实时处理新时代
大数据·阿里云·云计算
码不停蹄的玄黓1 小时前
MySQL分布式ID冲突详解:场景、原因与解决方案
数据库·分布式·mysql·id冲突
Aurora_NeAr2 小时前
Spark SQL架构及高级用法
大数据·后端·spark
王小王-1232 小时前
基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现
大数据·hive·hadoop·分布式·hadoop公共自行车·共享单车大数据分析·hadoop共享单车
数据与人工智能律师2 小时前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
Edingbrugh.南空3 小时前
Flink OceanBase CDC 环境配置与验证
大数据·flink·oceanbase
全星0073 小时前
解锁研发高效密码:全星研发项目管理APQP软件的多维助力
大数据·汽车
要开心吖ZSH3 小时前
《Spring 中上下文传递的那些事儿》Part 4:分布式链路追踪 —— Sleuth + Zipkin 实践
java·分布式·spring
幼稚园的山代王4 小时前
RabbitMQ 4.1.1初体验
分布式·rabbitmq·ruby