试除法判断素数优化【C语言】

代码引用

cpp 复制代码
int is_prime(int num) {
	if (num <= 1) return 0;
	if (num == 2 || num == 3) return 1;
	if (num % 2 == 0 || num % 3 == 0) return 0;
	for (int i = 5; i * i <= num; i += 6) {
		if (num % i == 0 || num % (i + 2) == 0) return 0;
	}
	return 1;
}

一、数学原理

所有大于3的素数都可以写成 6k ± 1

(除2和3外所有素数都在6的邻域内)

为什么呢?因为所有整数都可以表示为6k、6k+1、6k+2、6k+3、6k+4、6k+5。其中,6k、6k+2、6k+4都是偶数,已经被num%2排除了。6k+3则是3的倍数,已经被num%3排除了。剩下的只有6k+1和6k+5(也就是6k-1)。

二、优化原理

1. 先排除特殊情况

cpp 复制代码
if (num <= 1) return 0; // 1以下的数不是素数
if (num == 2 || num == 3) return 1; // 2和3是素数
if (num % 2 == 0 || num % 3 == 0) return 0; // 能被2或3整除的,肯定不是素数
  • 这些判断快速排除一些明显不是素数的情况,尤其是偶数和能被3整除的数,避免后续多余的计算。

2. 只检查到平方根

cpp 复制代码
for (int i = 5; i * i <= num; i += 6)
  • 只需要检查到 sqrt(num) ,因为一个数如果有因子大于 sqrt(),对应的另一个因子必小于 sqrt()

3. 以6的倍数间隔进行遍历

  • 这是优化的关键:所有素数(除了2和3)都可以写成形式为 6k ± 1 的数(其中k为整数)。

  • 这段代码只检查形如6k-1(即i)和6k+1(即i+2)的数是否能整除 num

简单总结:

这个算法利用了素数的数学性质(除2和3外所有素数都在6的邻域内),通过跳过非潜在因子(非6k±1的数),在保留正确性和完整性的基础上,大大优化了判断速度。

相关推荐
孞㐑¥3 分钟前
算法—哈希表
开发语言·c++·经验分享·笔记·算法
近津薪荼19 分钟前
递归专题(2)——合并链表
c++·学习·算法·链表
Asher阿舍技术站19 分钟前
【数字通信理论系列】四、载波相位同步
算法·载波同步
-Try hard-23 分钟前
队列 | 二叉树
算法
Sagittarius_A*26 分钟前
灰度变换与阈值化:从像素映射到图像二值化的核心操作【计算机视觉】
图像处理·人工智能·opencv·算法·计算机视觉·图像阈值·灰度变换
Nie_Xun34 分钟前
卡尔曼滤波(EKF/IEKF)与非线性优化(高斯-牛顿法)的统一关系
算法
仰泳的熊猫1 小时前
题目1433:蓝桥杯2013年第四届真题-危险系数
数据结构·c++·算法·蓝桥杯·深度优先·图论
平哥努力学习ing1 小时前
补充 part 1——防御性编程
算法
wbs_scy1 小时前
C++:智能指针完全指南(原理、用法与避坑实战,从 RAII 到循环引用)
开发语言·c++·算法
u0109272711 小时前
C++中的对象池模式
开发语言·c++·算法