【NLP 计算句子之间的BLEU和ROUGE分数】

安装依赖

bash 复制代码
pip install nltk rouge-score

批量处理代码

python 复制代码
from nltk.translate.bleu_score import corpus_bleu, SmoothingFunction
from rouge_score import rouge_scorer
import nltk

# 下载必要的资源(第一次运行需要)
nltk.download('wordnet')  # 用于 BLEU 的 tokenizer 等
nltk.download('punkt')     # 用于 tokenize

def batch_bleu(references, candidates):
    """
    计算批量 BLEU 分数 (BLEU-4)
    
    Args:
        references: List of lists of reference sentences (每项是多个参考答案列表)
        candidates: List of candidate sentences (模型生成的句子列表)
    
    Returns:
        float: 平均 BLEU-4 分数
    """
    smoothing = SmoothingFunction()
    
    # 将每个参考句子 tokenize
    tokenized_references = [[nltk.word_tokenize(sent) for sent in ref] for ref in references]
    
    # 将每个候选句子 tokenize
    tokenized_candidates = [nltk.word_tokenize(sent) for sent in candidates]

    # 计算 corpus BLEU
    bleu_score = corpus_bleu(
        tokenized_references,
        tokenized_candidates,
        weights=(0.25, 0.25, 0.25, 0.25),
        smoothing_function=smoothing.method1
    )
    return bleu_score


def batch_rouge(references, candidates):
    """
    计算批量 ROUGE 分数 (ROUGE-1, ROUGE-2, ROUGE-L)
    
    Args:
        references: List of reference sentences (每个样本一个参考句)
        candidates: List of candidate sentences
    
    Returns:
        dict: {'rouge1': f1, 'rouge2': f1, 'rougeL': f1}
    """
    scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
    scores = {'rouge1': [], 'rouge2': [], 'rougeL': []}

    for ref, cand in zip(references, candidates):
        score = scorer.score(ref, cand)
        scores['rouge1'].append(score['rouge1'].fmeasure)
        scores['rouge2'].append(score['rouge2'].fmeasure)
        scores['rougeL'].append(score['rougeL'].fmeasure)

    avg_scores = {k: sum(v)/len(v) for k, v in scores.items()}
    return avg_scores


def evaluate_all(references, candidates):
    """
    同时计算 BLEU 和 ROUGE 的批量评估函数
    
    Args:
        references: List of reference sentences
        candidates: List of candidate sentences
    
    Returns:
        dict: 包含 BLEU 和 ROUGE 的平均分数
    """
    bleu = batch_bleu([[ref] for ref in references], candidates)
    rouge = batch_rouge(references, candidates)
    return {
        'BLEU': round(bleu, 4),
        'ROUGE-1': round(rouge['rouge1'], 4),
        'ROUGE-2': round(rouge['rouge2'], 4),
        'ROUGE-L': round(rouge['rougeL'], 4)
    }

测试代码

python 复制代码
# 示例数据:批量输入
references = [
    "the cat is on the mat",
    "a dog is playing in the garden"
]

candidates = [
    "the cat sat on the mat",
    "a dog plays in the garden"
]

# 调用评估函数
results = evaluate_all(references, candidates)
print("Evaluation Results:", results)

输出

python 复制代码
Evaluation Results: {'BLEU': 0.1966, 'ROUGE-1': 0.8782, 'ROUGE-2': 0.6636, 'ROUGE-L': 0.8782}
相关推荐
智驱力人工智能5 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144875 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile5 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5775 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥5 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7255 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h5 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
数据与后端架构提升之路5 小时前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿5 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
Liue612312315 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘