论文阅读笔记——双流网络

双流网络论文

视频相比图像包含更多信息:运动信息、时序信息、背景信息等等。

原先处理视频的方法:

  • CNN + LSTM:CNN 抽取关键特征,LSTM 做时序逻辑;抽取视频中关键 K 帧输入 CNN 得到图片特征,再输入 LSTM,进行时间戳上的融合,得到视频的特征。最后将 LSTM 最终时刻的特征接一个 FC 层得到最终结果。
  • 3D 网络:输入 3D CNN,模型参数量大。

    作者认为 CNN 本身适合处理静态信息(如物体的形状、大小、颜色等)而非运动信息。于是采取另一个网络(光溜网络)抽取运动信息,CNN 只需要学习输入光流和最后动作信息之间的映射。
    最后的融合有两种方式:1)late fusion:两个 logits 加权平均得到最终结果;2)将 argmax 结果作为特征再训练一个 SVM 分类器。

光流是描述视频中物体的运动信息,对每个点实际上都是需要计算的,故而是一种密集表示。在本文中,作者将光流值压缩至 [0,255],采用 JPEG 存储。(光流的弊端------存储空间大、提取速度慢)

在本文中,光流采取了两种方式:1)简单叠加:每个点多次光流的叠加,光流点位置不更新;2)按轨迹叠加:每一帧都根据光流轨迹,更新光流点位置。(在本文实验中第一种方式更好,但实际上第二种更合理。)

在光流网络中,对所有视频首先 rescale 至 256,再固定抽取 25 帧(不管视频多长,等间距抽取),对抽取出来的每一帧都做 10 crop(每一帧裁剪 4 个边和 1 个中心,翻转之后再 crop 五张图)。

实验结果

  • 空间流网络:使用预训练模型更好,可以直接使用从 ImageNet 上预训练的模型。
    • From scratch:从头训练,效果更差。
    • Pre-trained + fine-tuning:微调整个模型。因为数据集过小,担心过拟合,实验了 dropout ratio=0.9
    • Pre-trained + last layer:微调最后一层,不担心过拟合。
  • 时间流网络:简单叠加效果更好
    • Single-frame:输入是单张光流图。
    • Optical flow stacking、 Trajectory stacking:简单叠加和按轨迹叠加。

总结

之前的深度学习方法没有利用运动信息,导致效果远不如手工特征,由此引入运动信息------光流;同时双流网络的应用同时表明了,当魔改单个网络无法解决时,可以给模型提供一些先验信息,往往能大幅简化。同时也证明了数据的重要性,更多更好的数据能够提升模型效果、泛化性等一系列问题。

相关推荐
若天明31 分钟前
深度学习-自然语言处理-序列模型与文本预处理
人工智能·深度学习·自然语言处理
.银河系.1 小时前
9.24 深度学习6
人工智能·深度学习
峰顶听歌的鲸鱼1 小时前
29.Linux防火墙管理
linux·运维·网络·笔记·学习方法
Wah-Aug1 小时前
深度学习视角下的图像分类
人工智能·深度学习·分类
山烛1 小时前
一文读懂循环神经网络(RNN):原理、局限与LSTM解决方案
人工智能·rnn·深度学习·lstm·门控循环单元·循环神经网络·长短时记忆网络
jun~1 小时前
SQLMap绕过 Web 应用程序保护靶机(打靶记录)
linux·笔记·学习·安全·web安全
.银河系.1 小时前
9.25 深度学习7
人工智能·深度学习
西猫雷婶1 小时前
python学智能算法(三十九)|使用PyTorch模块的normal()函数绘制正态分布函数图
开发语言·人工智能·pytorch·python·深度学习·神经网络·学习
风亦辰7391 小时前
深度学习初探:神经网络的基本结构
人工智能·深度学习·神经网络
每天更新2 小时前
linux驱动开发笔记
linux·驱动开发·笔记