Code
改自 jiangly
的模板,使用 Primal-Dual
算法.
cpp
template<class Flow, class Cost>
struct MCFGraph {
struct Edge {
int v;
Flow c;
Cost f;
Edge(int v, Flow c, Cost f) : v(v), c(c), f(f) {}
};
const int n;
std::vector<Edge> e;
std::vector<std::vector<int>> g;
std::vector<Cost> h, dis;
std::vector<int> pre;
bool dijkstra(int s, int t) {
dis.assign(n, std::numeric_limits<Cost>::max());
pre.assign(n, -1);
std::priority_queue<
std::pair<Cost, int>,
std::vector<std::pair<Cost, int>>,
std::greater<std::pair<Cost, int>>
> que;
dis[s] = 0;
que.emplace(0, s);
while (!que.empty()) {
Cost d = que.top().first;
int u = que.top().second;
que.pop();
if (dis[u] < d) continue;
for (int i : g[u]) {
int v = e[i].v;
Flow c = e[i].c;
Cost f = e[i].f;
if (c > 0 && dis[v] > d + h[u] - h[v] + f) {
dis[v] = d + h[u] - h[v] + f;
pre[v] = i;
que.emplace(dis[v], v);
}
}
}
return dis[t] != std::numeric_limits<Cost>::max();
}
MCFGraph(int n) : n(n), g(n) {}
void addEdge(int u, int v, Flow c, Cost f) {
g[u].push_back(e.size());
e.emplace_back(v, c, f);
g[v].push_back(e.size());
e.emplace_back(u, 0, -f);
}
std::pair<Flow, Cost> flow(int s, int t) {
Flow flow = 0;
Cost cost = 0;
h.assign(n, 0);
while (dijkstra(s, t)) {
for (int i = 0; i < n; ++i) h[i] += dis[i];
Flow aug = std::numeric_limits<Flow>::max();
for (int i = t; i != s; i = e[pre[i] ^ 1].v) aug = std::min(aug, e[pre[i]].c);
for (int i = t; i != s; i = e[pre[i] ^ 1].v) {
e[pre[i]].c -= aug;
e[pre[i] ^ 1].c += aug;
}
flow += aug;
cost += h[t] * aug;
}
return std::make_pair(flow, cost);
}
};
Usage
cpp
MCFGraph<Flow, Cost>::MCFGraph(int n);
创建一个网络图,有 n n n 个点,没有弧,容量类型为 Flow
,费用类型为 Cost
(只支持整数)
cpp
void MCFGraph<Flow, Cost>::addEdge(int u, int v, Flow c, Cost f);
在图中加入一条 u → v u\to v u→v,流量为 c c c ,单位流量费用为 f f f 的有向弧.
0 ≤ u , v < n 0\le u,v< n 0≤u,v<n, c c c 不超过 Flow
的范围, f f f 不超过 Cost
的范围.
cpp
pair<Flow, Cost> MCFGraph<Flow, Cost>::flow(int s, int t);
求出 s s s 到 t t t 的最小费用最大流(图会变为残量网络)
需要保证 first
,second
在 Flow
,Cost
范围内.
0 ≤ s , t < n 0\le s,t< n 0≤s,t<n
注意:不支持一边跑 flow
一边加弧.