OpenCV CUDA模块中矩阵操作------归一化与变换操作

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

在 OpenCV 的 CUDA 模块中,normalize 和 rectStdDev 函数用于对矩阵进行归一化处理和基于积分图计算矩形区域的标准差。

函数介绍

1. 归一化处理normalize

函数原型
cpp 复制代码
void cv::cuda::normalize
(
    InputArray src,           // 输入数组
    OutputArray dst,          // 输出数组
    double alpha = 1.0,       // 范围的下限或正则化因子
    double beta = 0.0,        // 范围的上限
    int norm_type = NORM_L2,  // 归一化的类型
    int dtype = -1,           // 输出数组的数据类型(-1 表示与输入相同)
    InputArray mask = noArray(), // 可选掩码
    Stream &stream = Stream::Null() // 可选 CUDA 流
);
参数说明
  • src: 输入 GPU 矩阵。
  • dst: 输出 GPU 矩阵。
  • alpha: 如果 norm_type 是 NORM_MINMAX,则为范围的下限;否则是正则化因子。
  • beta: 如果 norm_type 是 NORM_MINMAX,则为范围的上限。
  • norm_type: 归一化类型,如 NORM_MINMAX, NORM_L1, NORM_L2 等。
  • dtype: 输出数组的数据类型,默认为与输入相同。
  • mask: 可选掩码矩阵,指定哪些元素参与归一化。
  • stream: 可选 CUDA 流对象,用于异步执行。

2. 基于积分图计算矩形区域的标准差rectStdDev

函数原型
cpp 复制代码
void cv::cuda::rectStdDev
(
    InputArray src,   // 输入数组
    InputArray sqr,   // 输入平方数组
    OutputArray dst,  // 输出数组
    Rect rect,        // 计算标准差的矩形区域
    Stream &stream = Stream::Null() // 可选 CUDA 流
);
参数说明
  • src: 输入 GPU 矩阵。
  • sqr: 输入 GPU 矩阵的平方值。
  • dst: 输出 GPU 矩阵。
  • rect: 定义计算标准差的矩形区域。
  • stream: 可选 CUDA 流对象,用于异步执行。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 创建一个测试矩阵(float 类型)
    cv::Mat h_mat = ( cv::Mat_< float >( 3, 3 ) << 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f );

    // 转换为 rectStdDev 支持的类型:CV_32SC1
    cv::Mat h_int;
    h_mat.convertTo( h_int, CV_32SC1 );  // float -> int

    // 上传到 GPU
    cv::cuda::GpuMat d_src;
    d_src.upload( h_int );

    // 存储归一化结果的 GpuMat
    cv::cuda::GpuMat d_normalized;

    // 创建 CUDA 流
    cv::cuda::Stream stream;

    // 归一化处理 ------------------------------------------------------------------------------------------------

    // 使用 NORM_MINMAX 归一化
    cv::cuda::normalize( d_src, d_normalized, 0.0, 1.0, cv::NORM_MINMAX, -1, cv::noArray(), stream );
    stream.waitForCompletion();

    // 下载结果
    cv::Mat host_normalized;
    d_normalized.download( host_normalized );
    std::cout << "Normalized Matrix: \n" << host_normalized << std::endl;

    // 计算矩形区域的标准差 ------------------------------------------------------------------------------

    // 手动计算平方值(注意必须为 CV_64FC1)
    cv::Mat h_sqr;
    h_int.convertTo( h_sqr, CV_64FC1 );  // 先转为 double
    h_sqr = h_sqr.mul( h_sqr );          // 平方操作

    // 上传平方图像
    cv::cuda::GpuMat d_sqr;
    d_sqr.upload( h_sqr );

    // 定义矩形区域(例如中心 2x2 区域)
    cv::Rect rect( 1, 1, 2, 2 );

    // 存储标准差结果的 GpuMat
    cv::cuda::GpuMat d_stddev;

    // 计算标准差
    cv::cuda::rectStdDev( d_src, d_sqr, d_stddev, rect, stream );
    stream.waitForCompletion();

    // 下载结果
    cv::Mat host_stddev;
    d_stddev.download( host_stddev );
    std::cout << "Standard Deviation in Rect: " << host_stddev.at< double >( 0, 0 ) << std::endl;

    return 0;
}

运行结果

bash 复制代码
Normalized Matrix: 
[0, 0, 0;
 0, 0, 1;
 1, 1, 1]
Standard Deviation in Rect: 11.1384
相关推荐
董厂长3 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
G皮T6 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
九年义务漏网鲨鱼6 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间7 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享7 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾7 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码7 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5897 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien8 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松8 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能