OpenCV CUDA模块中矩阵操作------归一化与变换操作

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

在 OpenCV 的 CUDA 模块中,normalize 和 rectStdDev 函数用于对矩阵进行归一化处理和基于积分图计算矩形区域的标准差。

函数介绍

1. 归一化处理normalize

函数原型
cpp 复制代码
void cv::cuda::normalize
(
    InputArray src,           // 输入数组
    OutputArray dst,          // 输出数组
    double alpha = 1.0,       // 范围的下限或正则化因子
    double beta = 0.0,        // 范围的上限
    int norm_type = NORM_L2,  // 归一化的类型
    int dtype = -1,           // 输出数组的数据类型(-1 表示与输入相同)
    InputArray mask = noArray(), // 可选掩码
    Stream &stream = Stream::Null() // 可选 CUDA 流
);
参数说明
  • src: 输入 GPU 矩阵。
  • dst: 输出 GPU 矩阵。
  • alpha: 如果 norm_type 是 NORM_MINMAX,则为范围的下限;否则是正则化因子。
  • beta: 如果 norm_type 是 NORM_MINMAX,则为范围的上限。
  • norm_type: 归一化类型,如 NORM_MINMAX, NORM_L1, NORM_L2 等。
  • dtype: 输出数组的数据类型,默认为与输入相同。
  • mask: 可选掩码矩阵,指定哪些元素参与归一化。
  • stream: 可选 CUDA 流对象,用于异步执行。

2. 基于积分图计算矩形区域的标准差rectStdDev

函数原型
cpp 复制代码
void cv::cuda::rectStdDev
(
    InputArray src,   // 输入数组
    InputArray sqr,   // 输入平方数组
    OutputArray dst,  // 输出数组
    Rect rect,        // 计算标准差的矩形区域
    Stream &stream = Stream::Null() // 可选 CUDA 流
);
参数说明
  • src: 输入 GPU 矩阵。
  • sqr: 输入 GPU 矩阵的平方值。
  • dst: 输出 GPU 矩阵。
  • rect: 定义计算标准差的矩形区域。
  • stream: 可选 CUDA 流对象,用于异步执行。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 创建一个测试矩阵(float 类型)
    cv::Mat h_mat = ( cv::Mat_< float >( 3, 3 ) << 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f );

    // 转换为 rectStdDev 支持的类型:CV_32SC1
    cv::Mat h_int;
    h_mat.convertTo( h_int, CV_32SC1 );  // float -> int

    // 上传到 GPU
    cv::cuda::GpuMat d_src;
    d_src.upload( h_int );

    // 存储归一化结果的 GpuMat
    cv::cuda::GpuMat d_normalized;

    // 创建 CUDA 流
    cv::cuda::Stream stream;

    // 归一化处理 ------------------------------------------------------------------------------------------------

    // 使用 NORM_MINMAX 归一化
    cv::cuda::normalize( d_src, d_normalized, 0.0, 1.0, cv::NORM_MINMAX, -1, cv::noArray(), stream );
    stream.waitForCompletion();

    // 下载结果
    cv::Mat host_normalized;
    d_normalized.download( host_normalized );
    std::cout << "Normalized Matrix: \n" << host_normalized << std::endl;

    // 计算矩形区域的标准差 ------------------------------------------------------------------------------

    // 手动计算平方值(注意必须为 CV_64FC1)
    cv::Mat h_sqr;
    h_int.convertTo( h_sqr, CV_64FC1 );  // 先转为 double
    h_sqr = h_sqr.mul( h_sqr );          // 平方操作

    // 上传平方图像
    cv::cuda::GpuMat d_sqr;
    d_sqr.upload( h_sqr );

    // 定义矩形区域(例如中心 2x2 区域)
    cv::Rect rect( 1, 1, 2, 2 );

    // 存储标准差结果的 GpuMat
    cv::cuda::GpuMat d_stddev;

    // 计算标准差
    cv::cuda::rectStdDev( d_src, d_sqr, d_stddev, rect, stream );
    stream.waitForCompletion();

    // 下载结果
    cv::Mat host_stddev;
    d_stddev.download( host_stddev );
    std::cout << "Standard Deviation in Rect: " << host_stddev.at< double >( 0, 0 ) << std::endl;

    return 0;
}

运行结果

bash 复制代码
Normalized Matrix: 
[0, 0, 0;
 0, 0, 1;
 1, 1, 1]
Standard Deviation in Rect: 11.1384
相关推荐
Codebee4 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º5 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys5 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56785 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子5 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能5 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144875 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile5 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5776 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥6 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造