中文分词与数据可视化

一、中文分词(Chinese Word Segmentation)

1. 基本概念

中文分词是将连续的汉字序列切分成具有语义意义的词语的过程。例如:

  • 输入:"自然语言处理很有趣"

  • 输出:["自然语言", "处理", "很", "有趣"]

为什么需要分词?

  • 中文没有像英文那样的空格分隔单词。

  • 分词是中文自然语言处理(NLP)的基础任务,直接影响后续的文本分析(如情感分析、机器翻译等)。

2. 分词的难点
  • 歧义问题 :同一个句子可能有多种分词方式。

    例:"南京市长江大桥""南京市/长江大桥""南京/市长/江大桥"(错误切分)。

  • 未登录词识别:如新词、人名、地名、网络用语等。

  • 重叠词处理 :例如 "乒乓球拍卖完了""乒乓球/拍卖/完了""乒乓/球拍/卖完了"

3. 分词方法
  • 基于规则的分词:使用词典和规则(如最大匹配法、最短路径法)。

  • 基于统计的分词:利用机器学习模型(如隐马尔可夫模型、条件随机场)。

  • 混合方法:结合规则与统计模型(如深度学习模型:BERT、BiLSTM)。

4. 常用工具
  • Jieba(结巴分词):Python 中最流行的中文分词库,支持精确模式、全模式和搜索引擎模式。

  • HanLP:功能更全面的自然语言处理工具包,支持多语言。

  • SnowNLP:适用于中文文本处理的库,包含分词、情感分析等功能。

二、词云可视化(Word Cloud)

1. 基本概念

词云是一种通过视觉化展示文本中高频词汇的图表,词语的大小与其出现频率成正比。常用于:

  • 快速理解文本主题

  • 发现关键词

  • 数据报告或演示中的可视化工具

2. 生成词云的步骤
  1. 文本预处理:清洗数据(去停用词、标点符号、数字等)。

  2. 分词(中文特有):将文本切分为词语。

  3. 统计词频:计算每个词语的出现次数。

  4. 可视化设计:根据词频生成词云图(颜色、形状、字体可自定义)。

3. 核心要素
  • 词频统计:高频词更大、更显眼。

  • 停用词过滤:去除无意义词汇(如"的"、"是")。

  • 自定义形状:词云可以填充到特定形状(如地图、动物轮廓)。

4. 常用工具
  • Python 的 WordCloud 库:灵活且功能强大,支持自定义形状。

  • 在线工具 :如 WordArtTagul(适合快速生成)。

  • 其他编程语言 :R 语言的 wordcloud2 包、JavaScript 的 D3.js

三、两者的结合

中文分词是生成高质量词云的前提。具体流程:

  1. 输入一段中文文本。

  2. 使用分词工具(如 Jieba)切分词语。

  3. 过滤停用词并统计词频。

  4. 将词频数据输入词云工具生成可视化结果。

相关推荐
java1234_小锋10 小时前
[免费]基于Python的农产品可视化系统(Django+echarts)【论文+源码+SQL脚本】
python·信息可视化·django·echarts
unicrom_深圳市由你创科技18 小时前
MySQL 全文索引进阶:中文分词配置 + 模糊查询性能优化
mysql·性能优化·中文分词
Macbethad1 天前
数据可视化的实现方法
信息可视化
汤姆yu1 天前
基于大数据的信贷风险评估的数据可视化分析与预测系统
大数据·信息可视化
qiao若huan喜2 天前
10、webgl 基本概念 + 坐标系统 + 立方体
前端·javascript·信息可视化·webgl
数据超市2 天前
快速CAD转到PPT的方法,带教程
大数据·python·科技·信息可视化·数据挖掘
B站_计算机毕业设计之家3 天前
深度血虚:Django水果检测识别系统 CNN卷积神经网络算法 python语言 计算机 大数据✅
python·深度学习·计算机视觉·信息可视化·分类·cnn·django
码界筑梦坊3 天前
240-基于Python的医疗疾病数据可视化分析系统
开发语言·python·信息可视化·数据分析·毕业设计·echarts
码界筑梦坊3 天前
243-基于Django与VUE的笔记本电脑数据可视化分析系统
vue.js·python·信息可视化·数据分析·django·毕业设计·echarts
B站_计算机毕业设计之家3 天前
大数据YOLOv8无人机目标检测跟踪识别系统 深度学习 PySide界面设计 大数据 ✅
大数据·python·深度学习·信息可视化·数据挖掘·数据分析·flask