量化用到的机器学习书籍推荐

以下是一些适合不同层次读者的机器学习书籍推荐:

零基础入门

  • 《机器学习入门必备》:这本书没有复杂的公式推导,而是通过类比、案例和图片,通俗易懂地讲解了机器学习的基本概念、工具、数据处理、建模与优化等内容,非常适合没有任何基础的人工智能爱好者。

  • 《Machine Learning for Humans》:以通俗易懂的方式系统全面地介绍机器学习相关知识,理论部分之后还有充足的实践材料和最新进展与应用,适合初学者建立基础概念和知识框架。

  • 《零基础学机器学习》:目标是让非机器学习领域甚至非计算机专业出身但有学习需求的人,轻松掌握机器学习的基本知识,并拥有相关的实战能力,适合对AI感兴趣的程序员、项目经理、在校大学生以及任何想以零基础学机器学习的人。

基础理论与实践

  • 《机器学习》(周志华):这本书是机器学习领域的经典教材,内容丰富、讲解透彻,被称为"西瓜书"。它从基础概念讲起,涵盖了机器学习的多种算法和理论,适合有一定数学基础和编程能力的读者。

  • 《Python机器学习基础教程》:通过Python语言实现机器学习算法,结合理论与实践,适合有一定Python基础的读者学习机器学习的基本概念和常用算法。

  • 《机器学习实战》:这本书通过具体的项目案例,详细介绍了如何应用机器学习算法解决实际问题,适合有一定编程基础并希望在实践中学习机器学习的读者。

深入学习与进阶

  • 《深度学习》(Ian Goodfellow等著):被誉为"AI圣经",是深度学习领域的奠基性经典教科书,系统深入地讲解了深度学习的各类技术和前瞻性研究方向,适合有一定机器学习基础的读者深入学习深度学习。

  • 《机器学习:概率视角》:从概率论的角度全面介绍机器学习,内容深入且涵盖广泛,适合对机器学习的理论和数学基础有较高要求的读者,尤其是研究生和研究人员。

  • 《机器学习工程》:关注机器学习项目中的工程实践部分,适合有一定机器学习基础的算法工程师,帮助他们补充工程方面的知识和技能。

专业领域与应用

  • 《机器学习在量化交易中的应用》:虽然不是专门的机器学习书籍,但针对量化交易这一特定领域,详细介绍了机器学习在其中的应用,适合对量化交易感兴趣的读者。

  • 《机器学习在金融领域的应用》:同样针对金融领域,介绍了机器学习在风险评估、投资组合优化等方面的应用,适合金融行业的从业者和相关专业的学生。

根据你的学习阶段和兴趣方向,可以选择适合自己的书籍开始学习机器学习。

相关推荐
JXL186030 分钟前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉30 分钟前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
点云SLAM34 分钟前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
岁月静好202535 分钟前
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
人工智能·机器学习
Godspeed Zhao2 小时前
自动驾驶中的传感器技术34——Lidar(9)
人工智能·机器学习·自动驾驶
山烛2 小时前
矿物分类系统开发笔记(二):模型训练[删除空缺行]
人工智能·笔记·python·机器学习·分类·数据挖掘
硅谷秋水4 小时前
在相机空间中落地动作:以观察为中心的视觉-语言-行动策略
机器学习·计算机视觉·语言模型·机器人
游戏AI研究所4 小时前
ComfyUI 里的 Prompt 插值器(prompt interpolation / text encoder 插值方式)的含义和作用!
人工智能·游戏·机器学习·stable diffusion·prompt·aigc
Chirp4 小时前
BS-RoFormer,目前音频分离SOTA
人工智能·机器学习
九章云极AladdinEdu5 小时前
Scikit-learn通关秘籍:从鸢尾花分类到房价预测
人工智能·python·机器学习·分类·scikit-learn·gpu算力