量化用到的机器学习书籍推荐

以下是一些适合不同层次读者的机器学习书籍推荐:

零基础入门

  • 《机器学习入门必备》:这本书没有复杂的公式推导,而是通过类比、案例和图片,通俗易懂地讲解了机器学习的基本概念、工具、数据处理、建模与优化等内容,非常适合没有任何基础的人工智能爱好者。

  • 《Machine Learning for Humans》:以通俗易懂的方式系统全面地介绍机器学习相关知识,理论部分之后还有充足的实践材料和最新进展与应用,适合初学者建立基础概念和知识框架。

  • 《零基础学机器学习》:目标是让非机器学习领域甚至非计算机专业出身但有学习需求的人,轻松掌握机器学习的基本知识,并拥有相关的实战能力,适合对AI感兴趣的程序员、项目经理、在校大学生以及任何想以零基础学机器学习的人。

基础理论与实践

  • 《机器学习》(周志华):这本书是机器学习领域的经典教材,内容丰富、讲解透彻,被称为"西瓜书"。它从基础概念讲起,涵盖了机器学习的多种算法和理论,适合有一定数学基础和编程能力的读者。

  • 《Python机器学习基础教程》:通过Python语言实现机器学习算法,结合理论与实践,适合有一定Python基础的读者学习机器学习的基本概念和常用算法。

  • 《机器学习实战》:这本书通过具体的项目案例,详细介绍了如何应用机器学习算法解决实际问题,适合有一定编程基础并希望在实践中学习机器学习的读者。

深入学习与进阶

  • 《深度学习》(Ian Goodfellow等著):被誉为"AI圣经",是深度学习领域的奠基性经典教科书,系统深入地讲解了深度学习的各类技术和前瞻性研究方向,适合有一定机器学习基础的读者深入学习深度学习。

  • 《机器学习:概率视角》:从概率论的角度全面介绍机器学习,内容深入且涵盖广泛,适合对机器学习的理论和数学基础有较高要求的读者,尤其是研究生和研究人员。

  • 《机器学习工程》:关注机器学习项目中的工程实践部分,适合有一定机器学习基础的算法工程师,帮助他们补充工程方面的知识和技能。

专业领域与应用

  • 《机器学习在量化交易中的应用》:虽然不是专门的机器学习书籍,但针对量化交易这一特定领域,详细介绍了机器学习在其中的应用,适合对量化交易感兴趣的读者。

  • 《机器学习在金融领域的应用》:同样针对金融领域,介绍了机器学习在风险评估、投资组合优化等方面的应用,适合金融行业的从业者和相关专业的学生。

根据你的学习阶段和兴趣方向,可以选择适合自己的书籍开始学习机器学习。

相关推荐
Mr.看海16 小时前
机器学习鼻祖级算法——使用SVM实现多分类及Python实现
算法·机器学习·支持向量机
minhuan19 小时前
构建AI智能体:六十八、集成学习:从三个臭皮匠到AI集体智慧的深度解析
人工智能·机器学习·adaboost·集成学习·bagging
Cathy Bryant19 小时前
大模型推理(九):采样温度
笔记·神经网络·机器学习·数学建模·transformer
编码浪子20 小时前
对LlamaFactory的一点见解
人工智能·机器学习·数据挖掘
长桥夜波20 小时前
【第十八周】机器学习笔记07
人工智能·笔记·机器学习
音视频牛哥21 小时前
从“小而美”到“大而强”:音视频直播SDK的技术进化逻辑
机器学习·计算机视觉·音视频·大牛直播sdk·人工智能+·rtsp播放器rtmp播放器·rtmp同屏推流
丁浩6661 天前
Python机器学习---2.算法:逻辑回归
python·算法·机器学习
B站_计算机毕业设计之家1 天前
计算机毕业设计:Python农业数据可视化分析系统 气象数据 农业生产 粮食数据 播种数据 爬虫 Django框架 天气数据 降水量(源码+文档)✅
大数据·爬虫·python·机器学习·信息可视化·课程设计·农业
伏小白白白1 天前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
Cathy Bryant1 天前
大模型损失函数(二):KL散度(Kullback-Leibler divergence)
笔记·神经网络·机器学习·数学建模·transformer