通义千问-langchain使用构建(三)

目录

序言

在前两天的基础上,将xinference调整为wsl环境,docker部署。

然后langchain chatchat 还是本地虚拟环境直接跑。

以及简单在这个chatchat框架里上传了一个文本文件,询问大模型文件内容。

还行,跑起来了,坑也是不少

docker 部署xinference

1WSL环境docker安装

参考这个链接内容配置下wsl的docker环境,以及配置下国内私人dockerhub镜像源。

【现在竟然没有公司或者学校配置的dockerhub镜像了,奇怪,真奇怪。不配置就要梯子】

参考链接1:https://blog.csdn.net/wylszwr/article/details/147671490

这里有个坑,C盘如果空间不够,wsl最好迁移到D盘,因为大模型挺占空间的。

2拉取镜像运行容器

参考下面这个链接操作一下就好了,然后配置的端口,回头更新在chatchat的yaml文件就行。

【1050ti的显卡,cuda和torch这些版本适配有些麻烦,所以我就拉去的cpu版本镜像。

docker pull xprobe/xinference:latest-cpu】

参考链接2:https://inference.readthedocs.io/zh-cn/latest/getting_started/using_docker_image.html

3使用的界面

加载模型界面

就运行这里lunch模型,要等一会儿

这个运行这里就能看到已经下载到本地的模型了。

语言模型: 就是正常对话的。

嵌入模型embedding模型: 就是把上传的文本材料,解析成向量,搞到知识库的。

重排序rerank模型: 目前简单理解为嵌入模型的升级版(250517)。

参考链接3:https://blog.csdn.net/2401_84033492/article/details/144546055

图像模型: 简单理解为画图的。

音频模型: 简单理解为听声音,转换为声音的。

视频模型: 生成视频的。

本地跑chatchat

和上一篇的调整没啥区别。

就是yaml文件要更新。

【我看有人不建议chatchat在docker跑。我不搞是因为wsl搞docker compose插件有点繁琐】

1rag踩坑

有个问题就是上传文件半天没反应,参考这个降httpx版本就好了。

参考链接:https://blog.csdn.net/ddyzqddwb/article/details/144347702

2使用的界面

2.1配置个前置条件然后对话

2.2rag对话

往上找了个诗经的txt传上去,然后用模型阅读。只是一部分,全是文言文,我自己看着是挺头大的。

上传的文言文材料。

结论

windows机器。

wsl环境。

docker跑xinference

本地python环境跑了chatchat

实现大模型的管理加载,以及简单的知识库构建与rag管理。

这就是这次的内容。

相关推荐
大模型教程12 小时前
LangGraph实战教程(1)- 从零开始认识LangGraph
langchain·llm·agent
kyle-fang17 小时前
langchain概述
langchain
xixixi7777721 小时前
LangChain(一个用于构建大语言模型(LLM)应用程序的开源框架)
人工智能·深度学习·机器学习·langchain·大模型·大模型框架
玉龙婉雪1 天前
【LangGraph】ReAct构建-LangGraph简单实现
langchain·langgraph
AI大模型2 天前
手把手教:LangChain+Qwen3搭建本地RAG问答系统,从0到1全流程
程序员·langchain·llm
码农阿日2 天前
【日常学习-理解Langchain】从问题出发,我理解了LangChain为什么必须这么设计
服务器·学习·langchain
2202_756749692 天前
LangChain:LLMs和ChatModels介绍、LangChain 集成大模型的本地部署与 API 调用实践、提示词prompt、输出解析器、链
人工智能·langchain·prompt
学Linux的语莫3 天前
langchain输出解析器
java·前端·langchain
RainbowSea7 天前
14. Java开发者LLM实战——LangChain4j最新知识库实战
java·langchain·ai编程
RainbowSea7 天前
13. LangChain4j + 加入检索增加生成 RAG(知识库)
java·langchain·ai编程