SparkSQL基本操作

以下是 Spark SQL 的基本操作总结,涵盖数据读取、转换、查询、写入等核心功能:

一、初始化 SparkSession

scala

import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder()

.appName("Spark SQL Demo")

.master("local[*]") // 本地模式(集群用 `spark://host:port`)

.getOrCreate()

// 导入隐式转换(用于 DataFrame 与 RDD 互转)

import spark.implicits._

二、数据读取

  1. 读取文件(CSV/JSON/Parquet等)

scala

// 读取 CSV(带表头)

val csvDF = spark.read

.option("header", "true")

.option("inferSchema", "true") // 自动推断数据类型

.csv("路径/文件.csv")

// 读取 JSON

val jsonDF = spark.read.json("路径/文件.json")

// 读取 Parquet(Spark 原生格式,高效)

val parquetDF = spark.read.parquet("路径/文件.parquet")

  1. 读取数据库(如 MySQL)

scala

val jdbcDF = spark.read.format("jdbc")

.option("url", "jdbc:mysql://host:port/db")

.option("dbtable", "表名")

.option("user", "用户名")

.option("password", "密码")

.load()

  1. 从 RDD 创建 DataFrame

scala

// 示例:RDD 转 DataFrame(通过 case class 推断 Schema)

case class Person(id: Int, name: String, age: Int)

val peopleRDD = spark.sparkContext.parallelize(Seq(Person(1, "Alice", 25), Person(2, "Bob", 30)))

val peopleDF = peopleRDD.toDF() // 自动使用 case class 字段作为列名

三、基本数据操作

  1. 查看数据

scala

df.show() // 打印前20行(默认)

df.show(false) // 不截断长字符串

df.printSchema() // 查看表结构

df.describe().show() // 统计摘要(均值、计数等)

  1. 列操作

scala

// 选择列

df.select("name", "age").show()

// 新增列(表达式计算)

import org.apache.spark.sql.functions._

val dfWithNewColumn = df.withColumn("age_plus_1", col("age") + 1)

// 重命名列

val renamedDF = df.withColumnRenamed("old_name", "new_name")

// 删除列

val filteredDF = df.drop("column_to_drop")

  1. 行过滤与排序

scala

// 过滤行(where/filter 等价)

df.filter(col("age") > 18).show()

df.where("age > 18 AND name LIKE 'A%'").show()

// 排序(asc/desc)

df.orderBy(col("age").desc, "name").show() // 按年龄降序、姓名升序

  1. 分组与聚合

scala

import org.apache.spark.sql.functions._

// 分组统计(如计算每个年龄段的人数)

df.groupBy("age")

.agg(

count("*").alias("count"), // 计数

avg("score").alias("avg_score") // 平均值

).show()

// 窗口函数(如按年龄分区排序)

import org.apache.spark.sql.window.Window

val windowSpec = Window.partitionBy("age").orderBy(col("score").desc)

df.withColumn("rank", rank().over(windowSpec)).show()

四、Spark SQL 查询(SQL 语法)

  1. 注册临时视图

scala

df.createOrReplaceTempView("people") // 注册为临时视图(会话级)

  1. 执行 SQL 查询

scala

val sqlResult = spark.sql("""

SELECT name, age

FROM people

WHERE age > 25

ORDER BY age DESC

""")

sqlResult.show()

  1. 全局临时视图(跨会话)

scala

df.createGlobalTempView("global_people") // 全局视图,需用 `global_temp.表名` 访问

spark.sql("SELECT * FROM global_temp.global_people").show()

五、数据写入

  1. 保存为文件

scala

// 保存为 CSV(覆盖模式)

df.write.mode("overwrite") // 模式:overwrite/append/ignore/replace

.option("header", "true")

.csv("路径/输出.csv")

// 保存为 Parquet(压缩高效)

df.write.parquet("路径/输出.parquet")

  1. 写入数据库(如 MySQL)

scala

df.write.format("jdbc")

.option("url", "jdbc:mysql://host:port/db")

.option("dbtable", "表名")

.option("user", "用户名")

.option("password", "密码")

.mode("append") // 追加数据

.save()

  1. 保存为 Hive 表

scala

df.write.saveAsTable("hive_table") // 需提前启用 Hive 支持(spark.sql.catalogImplementation = hive)

六、数据类型与转换

  1. 常用数据类型
  • 基础类型: IntegerType 、 StringType 、 DoubleType 、 TimestampType

  • 复杂类型: ArrayType 、 MapType 、 StructType (嵌套结构)

  1. 类型转换

scala

import org.apache.spark.sql.functions._

// 字符串转整数

val castDF = df.withColumn("age_str", col("age").cast("string"))

// 时间格式转换

val timestampDF = df.withColumn("date", to_date(col("timestamp_col"), "yyyy-MM-dd"))

七、性能优化技巧

  1. 使用 Parquet 格式:列式存储,压缩率高,查询更快。

  2. 分区表:按日期/类别分区( partitionBy ),减少数据扫描范围。

  3. 缓存数据: df.cache() 避免重复计算(适用于多次查询的数据集)。

  4. 广播小表: spark.sql.autoBroadcastJoinThreshold 设置小表广播阈值(默认 10MB)。

八、停止 SparkSession

scala

spark.stop() // 释放资源

通过以上操作,可实现数据的读取、处理、分析和存储。实际应用中可结合业务需求灵活组合函数,或通过 Spark UI( http://localhost:4040 )监控作业执行情况。

相关推荐
zskj_zhyl4 小时前
智慧养老丨从依赖式养老到自主式养老:如何重构晚年生活新范式
大数据·人工智能·物联网
哲科软件5 小时前
从“电话催维修“到“手机看进度“——售后服务系统开发如何重构客户体验
大数据·智能手机·重构
zzywxc7875 小时前
AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
java·大数据·开发语言·人工智能·spring
专注API从业者5 小时前
构建淘宝评论监控系统:API 接口开发与实时数据采集教程
大数据·前端·数据库·oracle
一瓣橙子6 小时前
缺少关键的 MapReduce 框架文件
大数据·mapreduce
永洪科技13 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
weixin_3077791314 小时前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
上海锝秉工控17 小时前
防爆拉线位移传感器:工业安全的“隐形守护者”
大数据·人工智能·安全
cv高级工程师YKY17 小时前
SRE - - PV、UV、VV、IP详解及区别
大数据·服务器·uv
bxlj_jcj18 小时前
深入Flink核心概念:解锁大数据流处理的奥秘
大数据·flink