图像锐化调整

一、背景介绍

之前找多尺度做对比度增强时候,发现了一些锐化相关算法,正好本来也要整理锐化,这里就直接顺手对之前做过的锐化大概整理了下,方便后续用的时候直接抓了。

这里整理的锐化主要是两块:一个是参考论文:IEBPT(DARK IMAGE ENHANCEMENT BASED ON PAIRWISE TARGET CONTRAST AND MULTI-SCALE DETAIL BOOSTING), 另一个是在usm基础上,加上边缘方向信息,改善噪声和黑白边问题。

二、实现流程

1、IEBPT

这个的算法原理很简单,大概意思来说,将输入图像依次进行三次不同强度的高斯平滑后,做图像之间减法,获得不同程度的细节信息,然后通过一定的组合方式把这些细节信息融合到原图中,从而得到锐化之后图像。

感兴趣小伙伴可以参考资料:多尺度的图像细节提升。

算法效果图如下(左边是原图,右边是算法结果):

可以看到锐化效果很明显,但是也有明显副作用:噪声放大和明显黑白边问题。

2、usm原始版本

考虑抗噪声干扰,直接常见的usm 锐化,算法原理很简单:对输入图像进行高斯平滑,然后和原图相减得到纹理残差图像,残差图像上强度值信息小于一定阈值的当做噪声过滤掉,非噪声部分叠加回原图,得到细节增强后图像。感兴趣的小伙伴,可以参考资料:Unsharp Mask(USM)锐化算法的的原理及其实现。

算法效果图如下(左边是原图,右边是算法结果):

可以看到同样的,锐化效果明显,但是也存在不小的副作用:

a、噪声过滤不干净,无纹理区域比较大的噪声被增强,变得更加突兀。

b、黑白边也很明显。

3、usm改进版本

尝试在usm原版版本上,加入边缘纹理检测,简单来说就是只在纹理区域进行图像锐化,并且通过边缘强度抑制,改善黑白边问题。

因此首先需要进行抗噪声干扰的边缘检测,我这里是使用滤波核,对输入图像进行x,y和两个对角线方向滤波,滤波叠加结果作为边缘信息,相关原理感兴趣小伙伴可以参考资料:

6079:图像处理学习笔记(十四)------图像边缘锐化的基本方法(理论篇)

检查得到的边缘信息如下:

可以看到,边缘图像上噪声基本能过滤掉,并且根据边缘纹理信息,可以进行锐化强度控制。由于黑白边通常都是出现在强边附近,并且对强边来说,实际并不需要特别重的图像锐化,因此可以通过对强边缘锐化强度降低,改善黑白边问题。

通过抑制边缘强度大于或者小于一定范围的像素锐化强度,来避免噪声放大和黑白边异常。

算法效果图如下(左边是原图,右边是算法结果):

可以看到,黑白边和无纹理去噪噪声放大情况相对会好不少。

其实还有进一步改进空间,比如前面的边缘检测结果图,明显存在一些边缘不连续情况,可以考虑在多尺度上进行边缘检测,然后叠加结果作为最终边缘检测结果等。

三、复现代码

简单的复现代码地址:

https://github.com/yulinghan/ImageQualityEnhancement/tree/master/ltm/sharpen

相关推荐
uesowys32 分钟前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法
人工智能AI技术41 分钟前
预训练+微调:大模型的“九年义务教育+专项补课”
人工智能
aircrushin1 小时前
中国多模态大模型历史性突破:智源Emu3自回归统一范式技术深度解读
人工智能
Lsx_1 小时前
前端视角下认识 AI Agent 和 LangChain
前端·人工智能·agent
aiguangyuan1 小时前
使用LSTM进行情感分类:原理与实现剖析
人工智能·python·nlp
Yeats_Liao1 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
深圳市恒星物联科技有限公司1 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
断眉的派大星1 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
A尘埃1 小时前
电子厂PCB板焊点缺陷检测(卷积神经网络CNN)
人工智能·神经网络·cnn
Tadas-Gao2 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm