Java客户端访问Kafka
引入maven依赖
XML
复制代码
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka‐clients</artifactId>
<version>2.4.1</version>
</dependency>
消息发送端代码
java
复制代码
package com.tuling.kafka.kafkaDemo;
import com.alibaba.fastjson.JSON;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
public class MsgProducer {
private final static String TOPIC_NAME = "my‐replicated‐topic";
public static void main(String[] args) throws InterruptedException, ExecutionException {
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.65.60:9092,192.168.65.60:9093,192.168.65.60:9094");
// props.put(ProducerConfig.ACKS_CONFIG, "1");
// props.put(ProducerConfig.RETRIES_CONFIG, 3);
// props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);
// props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
// props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
// props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
Producer<String, String> producer = new KafkaProducer<>(props);
int msgNum = 5;
final CountDownLatch countDownLatch = new CountDownLatch(msgNum);
for (int i = 1; i <= msgNum; i++) {
Order order = new Order(i, 100 + i, 1, 1000.00);
// 指定发送分区
// ProducerRecord<String, String> producerRecord = new ProducerRecord<>(TOPIC_NAME, 0, order.getOrderId().toString(), JSON.toJSONString(order));
// 未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
ProducerRecord<String, String> producerRecord = new ProducerRecord<>(TOPIC_NAME, order.getOrderId().toString(), JSON.toJSONString(order));
// 等待消息发送成功的同步阻塞方法
// RecordMetadata metadata = producer.send(producerRecord).get();
// System.out.println("同步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
// + metadata.partition() + "|offset-" + metadata.offset());
// 异步回调方式发送消息
producer.send(producerRecord, new Callback() {
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception != null) {
System.err.println("发送消息失败:" + exception.getStackTrace());
}
if (metadata != null) {
System.out.println("异步方式发送消息结果:" + "topic-" + metadata.topic() + "|partition-"
+ metadata.partition() + "|offset-" + metadata.offset());
}
countDownLatch.countDown();
}
});
// 送积分 TODO
}
countDownLatch.await(5, TimeUnit.SECONDS);
producer.close();
}
}
消息接收端代码
java
复制代码
package com.tuling.kafka.kafkaDemo;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;
public class MsgConsumer {
private final static String TOPIC_NAME = "my‐replicated‐topic";
private final static String CONSUMER_GROUP_NAME = "testGroup";
public static void main(String[] args) {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.65.60:9092,192.168.65.60:9093,192.168.65.60:9094");
props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
// props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
// props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);
props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500);
props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(TOPIC_NAME));
// 消费指定分区
// consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
// 消息回溯消费
/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));*/
// 指定offset消费
/*consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);*/
// 从指定时间点开始消费
/*List<PartitionInfo> topicPartitions = consumer.partitionsFor(TOPIC_NAME);
// 从1小时前开始消费
long fetchDataTime = new Date().getTime() - 1000 * 60 * 60;
Map<TopicPartition, Long> map = new HashMap<>();
for (PartitionInfo par : topicPartitions) {
map.put(new TopicPartition(TOPIC_NAME, par.partition()), fetchDataTime);
}
Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);
for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : parMap.entrySet()) {
TopicPartition key = entry.getKey();
OffsetAndTimestamp value = entry.getValue();
if (key == null || value == null) continue;
Long offset = value.offset();
System.out.println("partition-" + key.partition() + "|offset-" + offset);
System.out.println();
// 根据消费里的timestamp确定offset
if (value != null) {
consumer.assign(Arrays.asList(key));
consumer.seek(key, offset);
}
}*/
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("收到消息:partition = %d, offset = %d, key = %s, value = %s%n", record.partition(),
record.offset(), record.key(), record.value());
}
/*if (records.count() > 0) {
// 手动同步提交offset,当前线程会阻塞直到offset提交成功
// 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了
consumer.commitSync();
// 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑
consumer.commitAsync(new OffsetCommitCallback() {
@Override
public void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception) {
if (exception != null) {
System.err.println("Commit failed for " + offsets);
System.err.printl
Spring Boot整合Kafka
引入spring boot kafka依赖
XML
复制代码
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring‐kafka</artifactId>
</dependency>
application.yml配置如下:
XML
复制代码
server:
port: 8080
spring:
kafka:
bootstrap-servers: 192.168.65.60:9092,192.168.65.60:9093,192.168.65.60:9094
producer:
retries: 3
batch-size: 16384
buffer-memory: 33554432
acks: 1
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
group-id: default-group
enable-auto-commit: false
auto-offset-reset: earliest
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
listener:
ack-mode: manual_immediate
发送者代码:
java
复制代码
package com.kafka;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class KafkaController {
private final static String TOPIC_NAME = "my‐replicated‐topic";
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
@RequestMapping("/send")
public void send() {
kafkaTemplate.send(TOPIC_NAME, 0, "key", "this is a msg");
}
}
消费者代码:
java
复制代码
package com.kafka;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
import org.springframework.stereotype.Component;
@Component
public class MyConsumer {
/**
* @KafkaListener(groupId = "testGroup", topicPartitions = {
* @TopicPartition(topic = "topic1", partitions = {"0", "1"}),
* @TopicPartition(topic = "topic2", partitions = "0",
* partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
* }, concurrency = "6")
* // concurrency 就是同组下的消费者个数,就是并发消费数,必须小于等于分区总数
* @param record
*/
@KafkaListener(topics = "my‐replicated‐topic", groupId = "zhugeGroup")
public void listenZhugeGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
String value = record.value();
System.out.println(value);
System.out.println(record);
// 手动提交offset
ack.acknowledge();
}
/* // 配置多个消费组
@KafkaListener(topics = "my‐replicated‐topic", groupId = "tulingGroup")
public void listenTulingGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {
String value = record.value();
System.out.println(value);
System.out.println(record);
ack.acknowledge();
} */
}