Python Day27 学习

今天学习讲义Day17的内容:无监督算法中的聚类@浙大疏锦行

Q1. 什么是聚类?

本质上就是一种分组分类

关于聚类的准备工作:

代码实现

python 复制代码
# 先运行之前预处理好的代码
import pandas as pd
import pandas as pd    #用于数据处理和分析,可处理表格数据。
import numpy as np     #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt    #用于绘制各种类型的图表
import seaborn as sns   #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import warnings
warnings.filterwarnings("ignore")
 
 # 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
data = pd.read_csv('data.csv')    #读取数据


# 先筛选字符串变量 
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
    'Own Home': 1,
    'Rent': 2,
    'Have Mortgage': 3,
    'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)

# Years in current job 标签编码
years_in_job_mapping = {
    '< 1 year': 1,
    '1 year': 2,
    '2 years': 3,
    '3 years': 4,
    '4 years': 5,
    '5 years': 6,
    '6 years': 7,
    '7 years': 8,
    '8 years': 9,
    '9 years': 10,
    '10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)

# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
    if i not in data2.columns:
       list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
    data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名



# Term 0 - 1 映射
term_mapping = {
    'Short Term': 0,
    'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  #把筛选出来的列名转换成列表
 
 # 连续特征用中位数补全
for feature in continuous_features:     
    mode_value = data[feature].mode()[0]            #获取该列的众数。
    data[feature].fillna(mode_value, inplace=True)          #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。

# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# # 按照8:2划分训练集和测试集
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 80%训练集,20%测试集
python 复制代码
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns

# 标准化数据(聚类前通常需要标准化)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# X_scaled

Q2. 聚类效果评估指标?

摘自讲义

Q3. 聚类常见的算法有哪些?

摘自讲义

(1)KMeans 聚类

基本概念
代码实现
python 复制代码
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
import matplotlib.pyplot as plt
import seaborn as sns

# 评估不同 k 值下的指标
k_range = range(2, 11)  # 测试 k 从 2 到 10
inertia_values = []
silhouette_scores = []
ch_scores = []
db_scores = []

for k in k_range:
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans_labels = kmeans.fit_predict(X_scaled)
    inertia_values.append(kmeans.inertia_)  # 惯性(肘部法则)
    silhouette = silhouette_score(X_scaled, kmeans_labels)  # 轮廓系数
    silhouette_scores.append(silhouette)
    ch = calinski_harabasz_score(X_scaled, kmeans_labels)  # CH 指数
    ch_scores.append(ch)
    db = davies_bouldin_score(X_scaled, kmeans_labels)  # DB 指数
    db_scores.append(db)
    print(f"k={k}, 惯性: {kmeans.inertia_:.2f}, 轮廓系数: {silhouette:.3f}, CH 指数: {ch:.2f}, DB 指数: {db:.3f}")

# 绘制评估指标图
plt.figure(figsize=(15, 10))

# 肘部法则图(Inertia)
plt.subplot(2, 2, 1)
plt.plot(k_range, inertia_values, marker='o')
plt.title('肘部法则确定最优聚类数 k(惯性,越小越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('惯性')
plt.grid(True)

# 轮廓系数图
plt.subplot(2, 2, 2)
plt.plot(k_range, silhouette_scores, marker='o', color='orange')
plt.title('轮廓系数确定最优聚类数 k(越大越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('轮廓系数')
plt.grid(True)

# CH 指数图
plt.subplot(2, 2, 3)
plt.plot(k_range, ch_scores, marker='o', color='green')
plt.title('Calinski-Harabasz 指数确定最优聚类数 k(越大越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('CH 指数')
plt.grid(True)

# DB 指数图
plt.subplot(2, 2, 4)
plt.plot(k_range, db_scores, marker='o', color='red')
plt.title('Davies-Bouldin 指数确定最优聚类数 k(越小越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('DB 指数')
plt.grid(True)

plt.tight_layout()
plt.show()
打印结果:
python 复制代码
k=2, 惯性: 218529.50, 轮廓系数: 0.320, CH 指数: 479.34, DB 指数: 3.222
k=3, 惯性: 207982.87, 轮廓系数: 0.209, CH 指数: 441.88, DB 指数: 2.906
k=4, 惯性: 200477.28, 轮廓系数: 0.220, CH 指数: 399.12, DB 指数: 2.441
k=5, 惯性: 192940.36, 轮廓系数: 0.224, CH 指数: 384.19, DB 指数: 2.042
k=6, 惯性: 185411.81, 轮廓系数: 0.227, CH 指数: 380.64, DB 指数: 1.733
k=7, 惯性: 178444.49, 轮廓系数: 0.130, CH 指数: 378.31, DB 指数: 1.633
k=8, 惯性: 174920.27, 轮廓系数: 0.143, CH 指数: 352.31, DB 指数: 1.817
k=9, 惯性: 167383.96, 轮廓系数: 0.150, CH 指数: 364.27, DB 指数: 1.636
k=10, 惯性: 159824.84, 轮廓系数: 0.156, CH 指数: 378.43, DB 指数: 1.502
对以上代码不理解的部分进行学习

关于评估不同k值下的指标

代码继续
python 复制代码
# 提示用户选择 k 值
selected_k = 6

# 使用选择的 k 值进行 KMeans 聚类
kmeans = KMeans(n_clusters=selected_k, random_state=42)
kmeans_labels = kmeans.fit_predict(X_scaled)
X['KMeans_Cluster'] = kmeans_labels

# 使用 PCA 降维到 2D 进行可视化
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)

# KMeans 聚类结果可视化
plt.figure(figsize=(6, 5))
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=kmeans_labels, palette='viridis')
plt.title(f'KMeans Clustering with k={selected_k} (PCA Visualization)')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()

# 打印 KMeans 聚类标签的前几行
print(f"KMeans Cluster labels (k={selected_k}) added to X:")
print(X[['KMeans_Cluster']].value_counts())
打印结果:
python 复制代码
KMeans Cluster labels (k=6) added to X:
KMeans_Cluster
0                 5205
1                 1220
2                  903
3                  128
4                   34
5                   10
dtype: int64
对以上代码不理解处进行学习

今天学习到这里,明日学习剩余的聚类算法。加油!!!> 0 <

相关推荐
weixin_452159551 分钟前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
多米Domi0117 分钟前
0x3f 第48天 面向实习的八股背诵第五天 + 堆一题 背了JUC的题,java.util.Concurrency
开发语言·数据结构·python·算法·leetcode·面试
深蓝海拓14 分钟前
PySide6从0开始学习的笔记(二十六) 重写Qt窗口对象的事件(QEvent)处理方法
笔记·python·qt·学习·pyqt
纠结哥_Shrek14 分钟前
外贸选品工程师的工作流程和方法论
python·机器学习
小汤圆不甜不要钱16 分钟前
「Datawhale」RAG技术全栈指南 Task 5
python·llm·rag
Coding茶水间16 分钟前
基于深度学习的输电电力设备检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
A懿轩A1 小时前
【Java 基础编程】Java 变量与八大基本数据类型详解:从声明到类型转换,零基础也能看懂
java·开发语言·python
Tansmjs1 小时前
使用Python自动收发邮件
jvm·数据库·python
m0_561359671 小时前
用Python监控系统日志并发送警报
jvm·数据库·python