目标检测 Sparse DETR(2022)详细解读

文章目录

Sparse DETR 通过以下方式改进了DETR:

  1. 稀疏注意力:Sparse DETR 优化了交叉注意力机制,使其仅关注图像中可能包含目标的区域,而不是整个图像。这减少了计算量和提高了效率。
  2. 前景预测器的监督:Sparse DETR 特别关注前景目标的预测。它通过解码器的交叉注意力图(DAM,Decoder's Cross-Attention Map)来实现这一点。DAM是基于解码器的查询和编码器的先验(来自编码器的输出)计算的。

前景预测器和交叉注意力图(DAM)

  1. 前景预测器:这是一个网络头,用于预测图像中的哪些区域是前景(即包含目标的区域)。
  2. 交叉注意力图(DAM)
    • DAM是通过解码器的查询和编码器的先验之间的交叉注意力计算得到的。
    • DAM用于确定解码器的哪些查询应该关注编码器的哪些位置,从而帮助模型集中注意力在包含目标的区域。
    • 通过这种方式,Sparse DETR 能够更有效地将解码器的查询与相关的编码器特征关联起来,从而提高目标检测的准确性。
相关推荐
科研服务器mike_leeso9 分钟前
41 年 7 次转型!戴尔从 PC 到 AI 工厂的技术跃迁与组织重构
大数据·人工智能·机器学习
大千AI助手23 分钟前
机器学习模型评估指标AUC详解:从理论到实践
人工智能·机器学习·模型评估·roc·precision·recall·auc
2501_9139817831 分钟前
2025年智能家居无线数传设备品牌方案精选
大数据·人工智能·智能家居
不老刘35 分钟前
GitHub Spec-Kit:AI 时代的规范驱动开发工具
人工智能·github·spec-kit
mit6.82438 分钟前
[tile-lang] 张量核心 | 传统MMA->WGMMA | 底层自动选择优化
人工智能·chatgpt
csuzhucong38 分钟前
人类知识体系分类
人工智能·分类·数据挖掘
DisonTangor1 小时前
Lumina-DiMOO:用于多模态生成与理解的全扩散大语言模型
人工智能·语言模型·自然语言处理·ai作画·aigc
golang学习记1 小时前
阿里又出手了,发布全新终端CLI工具,还支持VSCode
人工智能
机器之心1 小时前
具身智能迎来ImageNet时刻:RoboChallenge开放首个大规模真机基准测试集
人工智能·openai
lanyancloud_JX1 小时前
公路工程项目管理软件选型指南
人工智能