目标检测 Sparse DETR(2022)详细解读

文章目录

Sparse DETR 通过以下方式改进了DETR:

  1. 稀疏注意力:Sparse DETR 优化了交叉注意力机制,使其仅关注图像中可能包含目标的区域,而不是整个图像。这减少了计算量和提高了效率。
  2. 前景预测器的监督:Sparse DETR 特别关注前景目标的预测。它通过解码器的交叉注意力图(DAM,Decoder's Cross-Attention Map)来实现这一点。DAM是基于解码器的查询和编码器的先验(来自编码器的输出)计算的。

前景预测器和交叉注意力图(DAM)

  1. 前景预测器:这是一个网络头,用于预测图像中的哪些区域是前景(即包含目标的区域)。
  2. 交叉注意力图(DAM)
    • DAM是通过解码器的查询和编码器的先验之间的交叉注意力计算得到的。
    • DAM用于确定解码器的哪些查询应该关注编码器的哪些位置,从而帮助模型集中注意力在包含目标的区域。
    • 通过这种方式,Sparse DETR 能够更有效地将解码器的查询与相关的编码器特征关联起来,从而提高目标检测的准确性。
相关推荐
分布式存储与RustFS5 分钟前
RustFS的边缘计算优化方案在5G MEC场景下的实测数据如何?
人工智能·5g·开源·边缘计算·rustfs
2501_9248905213 分钟前
商超场景徘徊识别误报率↓79%!陌讯多模态时序融合算法落地优化
java·大数据·人工智能·深度学习·算法·目标检测·计算机视觉
SalvoGao35 分钟前
空转学习 | cell-level 与 spot-level的区别
人工智能·深度学习·学习
初岘37 分钟前
自动驾驶GOD:3D空间感知革命
人工智能·3d·自动驾驶
什么都想学的阿超1 小时前
【大语言模型 15】因果掩码与注意力掩码实现:深度学习中的信息流控制艺术
人工智能·深度学习·语言模型
码蛊仙尊1 小时前
当我们想用GPU(nlp模型篇)
人工智能·自然语言处理
学习3人组1 小时前
手写数字识别代码
人工智能·python
Codebee2 小时前
Qoder初体验:从下载到运行OneCode可视化设计器的完整实战指南
人工智能
双向332 小时前
高并发AI服务部署方案:vLLM、TGI、FastChat性能压测报告
人工智能
JANGHIGH2 小时前
在自动驾驶中ESKF实现GINS时,是否将重力g作为变量考虑进去的目的是什么?
人工智能·机器人·自动驾驶