目标检测 Sparse DETR(2022)详细解读

文章目录

Sparse DETR 通过以下方式改进了DETR:

  1. 稀疏注意力:Sparse DETR 优化了交叉注意力机制,使其仅关注图像中可能包含目标的区域,而不是整个图像。这减少了计算量和提高了效率。
  2. 前景预测器的监督:Sparse DETR 特别关注前景目标的预测。它通过解码器的交叉注意力图(DAM,Decoder's Cross-Attention Map)来实现这一点。DAM是基于解码器的查询和编码器的先验(来自编码器的输出)计算的。

前景预测器和交叉注意力图(DAM)

  1. 前景预测器:这是一个网络头,用于预测图像中的哪些区域是前景(即包含目标的区域)。
  2. 交叉注意力图(DAM)
    • DAM是通过解码器的查询和编码器的先验之间的交叉注意力计算得到的。
    • DAM用于确定解码器的哪些查询应该关注编码器的哪些位置,从而帮助模型集中注意力在包含目标的区域。
    • 通过这种方式,Sparse DETR 能够更有效地将解码器的查询与相关的编码器特征关联起来,从而提高目标检测的准确性。
相关推荐
人工智能训练3 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海4 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor5 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19825 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了6 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队6 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒6 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6006 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房6 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20117 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习