Python打卡第34天

@浙大疏锦行

作业:

loss.item() 虽然只在 CPU 中执行,但它会触发一次 GPU → CPU 的强制同步,这是影响性能的关键!

loss.item() 做了什么?

  1. 数据原本在 GPU 上
  • 训练时,loss 是一个 GPU 上的张量(比如 torch.cuda.FloatTensor)。

  • GPU 可以高效计算,但 不能直接读取数值(就像工厂生产产品,但你要亲自去工厂拿货)。

  1. .item() 的本质
  • loss.item() 做了 3 件事:

    1. 暂停 GPU 计算:强制 GPU 停下当前所有任务(同步点)。

    2. 把数据从 GPU 复制到 CPU(通过 PCIe 总线,就像用卡车从工厂运货到商店)。

    3. 转换成 Python 数字(floatint),因为 Python 只能处理 CPU 数据。

  1. 为什么这么慢?
  • 不是 .item() 本身慢,而是 GPU→CPU 的传输和同步慢!

  • 每次调用 .item(),GPU 都要:

    • 等所有并行计算完成(比如 1000 个 CUDA 核心都要停)。

    • 走 PCIe 总线(带宽有限,延迟高)。

    • 等 CPU 确认收到数据后才能继续计算。

__call__方法

在 Python 中,call 方法是一个特殊的魔术方法(双下划线方法),它允许类的实例像函数一样被调用。这种特性使得对象可以表现得像函数,同时保留对象的内部状态。

比如:

python 复制代码
# 不带参数的call方法
class Counter:
    def __init__(self):
        self.count = 0
    
    def __call__(self):
        self.count += 1
        return self.count

# 使用示例
counter = Counter()
print(counter())  # 输出: 1
print(counter())  # 输出: 2
print(counter())  # 输出: 3
print(counter.count)  # 输出: 3
python 复制代码
1
2
3
3
python 复制代码
# 带参数的call方法
class Adder:
    def __call__(self, a, b):
        print("唱跳篮球rap")
        return a + b

adder = Adder()
print(adder(3, 5))  # 输出: 8
python 复制代码
唱跳篮球rap
8

为什么 PyTorch 要用 __call__ 而不是直接暴露 forward

  1. 封装性:__call__ 可以统一管理 forward 前后的逻辑(如自动梯度、Hook 机制)。

  2. 安全性:防止用户直接调用 forward 导致梯度丢失或计算图断裂。

  3. 一致性:让所有模块(nn.Linearnn.Conv2d、自定义模型)都能用 module(x) 的方式调用。

相关推荐
故作春风2 分钟前
手把手实现一个前端 AI 编程助手:从 MCP 思想到 VS Code 插件实战
前端·人工智能
人工智能训练11 分钟前
在ubuntu系统中如何将docker安装在指定目录
linux·运维·服务器·人工智能·ubuntu·docker·ai编程
掘金一周13 分钟前
没开玩笑,全框架支持的 dialog 组件,支持响应式| 掘金一周 11.6
前端·人工智能
CoovallyAIHub24 分钟前
首个大规模、跨模态医学影像编辑数据集,Med-Banana-50K数据集专为医学AI打造(附数据集地址)
深度学习·算法·计算机视觉
小白学大数据29 分钟前
构建1688店铺商品数据集:Python爬虫数据采集与格式化实践
开发语言·爬虫·python
闲人编程32 分钟前
用Python和Telegram API构建一个消息机器人
网络·python·机器人·api·毕设·telegram·codecapsule
电鱼智能的电小鱼37 分钟前
基于电鱼 ARM 边缘网关的智慧工地数据可靠传输方案——断点续传 + 4G/5G冗余通信,保障数据完整上传
arm开发·人工智能·嵌入式硬件·深度学习·5g·机器学习
Juchecar43 分钟前
翻译:Agentic AI:面向企业应用的智能
人工智能
大邳草民44 分钟前
深入理解 Python 的“左闭右开”设计哲学
开发语言·笔记·python
武子康1 小时前
AI研究-121 DeepSeek-OCR 研究路线:无限上下文、跨模态抽取、未来创意点、项目创意点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr