MySQL 8.0 和 5.7 快速生成测试数据

MySQL 5.7 和 8.0 生成百万级测试数据的方法

MySQL 5.7 和 8.0 都可以通过多种方式生成大量测试数据,以下是几种高效的方法:

方法一:使用存储过程批量插入

这是最通用的方法,适用于所有 MySQL 版本:

sql 复制代码
-- 创建测试表
CREATE TABLE test_data (
    id INT PRIMARY KEY AUTO_INCREMENT,
    name VARCHAR(50),
    age INT,
    email VARCHAR(100),
    create_time DATETIME
);

-- 创建存储过程
DELIMITER $$

CREATE PROCEDURE generate_test_data(IN rows INT)
BEGIN
    DECLARE i INT DEFAULT 1;
    START TRANSACTION;
    WHILE i <= rows DO
        INSERT INTO test_data (name, age, email, create_time)
        VALUES (
            CONCAT('user_', FLOOR(RAND() * 1000000)),
            FLOOR(RAND() * 100),
            CONCAT('user_', FLOOR(RAND() * 1000000), '@example.com'),
            NOW() - INTERVAL FLOOR(RAND() * 365) DAY
        );
        SET i = i + 1;
    END WHILE;
    COMMIT;
END$$

DELIMITER ;

-- 调用存储过程生成100万条数据(可能需要几分钟)
CALL generate_test_data(1000000);
方法二:使用 INSERT ... SELECT 语句(MySQL 8.0 优化版)

MySQL 8.0 支持更高效的生成方式:

sql 复制代码
-- 创建测试表
CREATE TABLE test_data (
    id INT PRIMARY KEY AUTO_INCREMENT,
    name VARCHAR(50),
    age INT,
    email VARCHAR(100),
    create_time DATETIME
);

-- 关闭自动提交以提高性能
SET autocommit=0;

-- 生成100万条数据(利用递归CTE)
WITH RECURSIVE generate_rows AS (
    SELECT 1 AS n
    UNION ALL
    SELECT n + 1 FROM generate_rows WHERE n < 1000000
)
INSERT INTO test_data (name, age, email, create_time)
SELECT 
    CONCAT('user_', n),
    FLOOR(RAND() * 100),
    CONCAT('user_', n, '@example.com'),
    NOW() - INTERVAL FLOOR(RAND() * 365) DAY
FROM generate_rows;

-- 提交事务
COMMIT;
方法三:使用 sysbench(推荐方案)

对于超大数据量,推荐使用专业工具如 sysbench:

bash 复制代码
# 安装sysbench(Ubuntu/Debian)
sudo apt-get install sysbench

# 准备测试数据(100万行)
sysbench --db-driver=mysql --mysql-host=localhost --mysql-port=3306 \
--mysql-user=root --mysql-password=yourpassword --mysql-db=test \
--tables=1 --table-size=1000000 oltp_read_write prepare

# 运行测试(可选)
sysbench --db-driver=mysql --mysql-host=localhost --mysql-port=3306 \
--mysql-user=root --mysql-password=yourpassword --mysql-db=test \
--tables=1 --table-size=1000000 --threads=16 --time=60 \
oltp_read_write run

# 清理数据(可选)
sysbench --db-driver=mysql --mysql-host=localhost --mysql-port=3306 \
--mysql-user=root --mysql-password=yourpassword --mysql-db=test \
--tables=1 --table-size=1000000 oltp_read_write cleanup

性能优化建议

  1. 关闭自动提交 :在批量插入前执行 SET autocommit=0;,插入完成后执行 COMMIT;

  2. 禁用索引:在导入前禁用非主键索引,导入后重新启用:

    sql 复制代码
    ALTER TABLE test_data DISABLE KEYS;
    -- 插入数据
    ALTER TABLE test_data ENABLE KEYS;
  3. 调整参数

    sql 复制代码
    SET GLOBAL innodb_buffer_pool_size = 2G;  -- 增大缓冲池
    SET GLOBAL sync_binlog = 0;              -- 减少磁盘IO
    SET GLOBAL innodb_flush_log_at_trx_commit = 2;
  4. 分批插入:对于存储过程方法,建议每次插入10万行左右,避免事务过大

根据你的具体场景选择合适的方法,sysbench 方案通常是最高效的,而存储过程方法最灵活。

相关推荐
尽兴-2 分钟前
MySQL执行UPDATE语句的全流程深度解析
数据库·mysql·innodb·dba·存储引擎·update
alonewolf_995 分钟前
MySQL 架构与SQL执行全流程深度解析
sql·mysql·架构
MXM_7777 分钟前
laravel 并发控制写法-涉及资金
java·数据库·oracle
·云扬·8 分钟前
【实操教程】Excel文件转CSV并导入MySQL的完整步骤
android·mysql·excel
进阶的小名9 分钟前
[超轻量级消息队列(MQ)] Redis 不只是缓存:我用 Redis Stream 实现了一个 MQ(自定义注解方式)
数据库·spring boot·redis·缓存·消息队列·个人开发
列御寇9 分钟前
MongoDB分片集群——分片键(Shard Keys)概述
数据库·mongodb
触想工业平板电脑一体机9 分钟前
【触想智能】工业触控一体机在船舶海运设备上应用的特点和具体场景分析
android·网络·计算机外设·电脑·智能电视
Change_JW13 分钟前
reserved mem addr & size
android
oMcLin14 分钟前
如何在Ubuntu 22.04 LTS上通过配置ZFS存储池,提升高吞吐量数据库的读写性能与可靠性?
linux·数据库·ubuntu
汤面不加鱼丸14 分钟前
android实践:生成.9.png图片
android