吴恩达机器学习笔记:逻辑回归3

3.判定边界

现在说下决策边界(decision boundary)的概念。这个概念能更好地帮助我们理解逻辑回归的假设函数在计算什么。

在逻辑回归中,我们预测:

当ℎθ (x) >= 0.5时,预测 y = 1。

当ℎθ (x) < 0.5时,预测 y = 0 。

根据上面绘制出的 S 形函数图像,我们知道当

Z = 0 时 g(Z) = 0.5

Z > 0 时 g(Z) > 0.5

Z < 0 时 g(Z) < 0.5 又 Z = θ T x θ^{T}x θTx,

即:
θ T x θ^{T}x θTx >= 0 时,预测 y = 1
θ T x θ^{T}x θTx < 0 时,预测 y = 0

现在假设我们有一个模型:

并且参数θ是向量[-3 1 1] 。 则当−3 + x 1 x_1 x1 + x 2 x_2 x2 ≥ 0,即 x 1 x_1 x1 + x 2 x_2 x2 ≥ 3时,模型将预测 y = 1 。

我们可以绘制直线 x 1 x_1 x1 + x 2 x_2 x2 = 3,这条线便是我们模型的分界线,将预测为1的区域和预测为0的区域分隔开。

假使我们的数据呈现这样的分布情况,怎样的模型才能适合呢?

因为需要用曲线才能分隔 y = 0 的区域和 y = 1 的区域,我们需要二次方特征:
h θ ( x ) = g ( θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x + θ 4 x ) h_\theta(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x + \theta_4 x) hθ(x)=g(θ0+θ1x1+θ2x2+θ3x+θ4x)的参数向量为[-1 0 0 1 1],则我们得到的判定边界恰好是圆点在原点且半径为 1 的圆形。

我们可以用非常复杂的模型来适应非常复杂形状的判定边界。

相关推荐
brave and determined1 小时前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
hssfscv2 小时前
Javaweb 学习笔记——html+css
前端·笔记·学习
brave and determined2 小时前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录
源于花海2 小时前
迁移学习的第一类方法:数据分布自适应(1)——边缘分布自适应
人工智能·机器学习·迁移学习·数据分布自适应
科士威传动3 小时前
丝杆支撑座同轴度如何安装?
人工智能·科技·机器学习·自动化
Dream Algorithm3 小时前
自古英雄多寂寥
笔记
_Li.3 小时前
机器学习-集成学习
人工智能·机器学习·集成学习
yuhaiqun19894 小时前
Typora 技能进阶:从会写 Markdown 到玩转配置 + 插件高效学习笔记
经验分享·笔记·python·学习·学习方法·ai编程·markdown
apcipot_rain4 小时前
汇编语言与逆向分析 一轮复习笔记
汇编·笔记·逆向
极度畅想4 小时前
脑电模型实战系列(三):基于 KNN 的 DEAP 脑电情绪识别 KNN 算法与 Canberra 距离深度剖析(三)
机器学习·knn·脑机接口·情绪识别·bci·canberra距离