吴恩达机器学习笔记:逻辑回归3

3.判定边界

现在说下决策边界(decision boundary)的概念。这个概念能更好地帮助我们理解逻辑回归的假设函数在计算什么。

在逻辑回归中,我们预测:

当ℎθ (x) >= 0.5时,预测 y = 1。

当ℎθ (x) < 0.5时,预测 y = 0 。

根据上面绘制出的 S 形函数图像,我们知道当

Z = 0 时 g(Z) = 0.5

Z > 0 时 g(Z) > 0.5

Z < 0 时 g(Z) < 0.5 又 Z = θ T x θ^{T}x θTx,

即:
θ T x θ^{T}x θTx >= 0 时,预测 y = 1
θ T x θ^{T}x θTx < 0 时,预测 y = 0

现在假设我们有一个模型:

并且参数θ是向量[-3 1 1] 。 则当−3 + x 1 x_1 x1 + x 2 x_2 x2 ≥ 0,即 x 1 x_1 x1 + x 2 x_2 x2 ≥ 3时,模型将预测 y = 1 。

我们可以绘制直线 x 1 x_1 x1 + x 2 x_2 x2 = 3,这条线便是我们模型的分界线,将预测为1的区域和预测为0的区域分隔开。

假使我们的数据呈现这样的分布情况,怎样的模型才能适合呢?

因为需要用曲线才能分隔 y = 0 的区域和 y = 1 的区域,我们需要二次方特征:
h θ ( x ) = g ( θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x + θ 4 x ) h_\theta(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x + \theta_4 x) hθ(x)=g(θ0+θ1x1+θ2x2+θ3x+θ4x)的参数向量为[-1 0 0 1 1],则我们得到的判定边界恰好是圆点在原点且半径为 1 的圆形。

我们可以用非常复杂的模型来适应非常复杂形状的判定边界。

相关推荐
Ccjf酷儿2 小时前
操作系统 蒋炎岩 3.硬件视角的操作系统
笔记
习习.y3 小时前
python笔记梳理以及一些题目整理
开发语言·笔记·python
在逃热干面3 小时前
(笔记)自定义 systemd 服务
笔记
双翌视觉3 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中4 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
DKPT4 小时前
ZGC和G1收集器相比哪个更好?
java·jvm·笔记·学习·spring
我不是QI6 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
QT 小鲜肉6 小时前
【孙子兵法之上篇】001. 孙子兵法·计篇
笔记·读书·孙子兵法
H***99766 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
长桥夜波6 小时前
机器学习日报20
人工智能·机器学习