机器学习:使用LSTM训练情感分析模型

背景:电商平台收到了许多关于宝贝的评论,需要自动从大量的数据中分析出各种情感的用户评论,并实时给出预警和提醒。

数据格式:

数据中最重要的两列:Review Text 和Rating,一个是评论内容一个是评分。

第一步:先进行数据处理:

python 复制代码
def load_and_preprocess_data(filepath):
    """加载并预处理数据"""
    df = pd.read_csv(filepath)
    texts = df['Review Text'].values
    labels = df['Rating'].values

    # 标签编码 (1-5 -> 0-4)
    le = LabelEncoder()
    labels = le.fit_transform(labels)

    # 文本序列化
    tokenizer = Tokenizer(num_words=20000, oov_token="<OOV>")
    tokenizer.fit_on_texts(texts)
    sequences = tokenizer.texts_to_sequences(texts)
    padded_sequences = pad_sequences(sequences, maxlen=200, truncating='post')

    return padded_sequences, labels, tokenizer, le

加载数据,并将数据序列化。

第二步:利用LSTM建立模型的结构,设置数据嵌入的向量维度:

python 复制代码
def build_model(vocab_size, max_len, embedding_dim=128):
    """构建LSTM模型"""
    model = Sequential([
        Embedding(vocab_size, embedding_dim, input_length=max_len),
        Bidirectional(LSTM(64, return_sequences=True)),
        Dropout(0.5),
        LSTM(32),
        Dropout(0.5),
        Dense(64, activation='relu'),
        Dropout(0.5),
        Dense(5, activation='softmax')
    ])

    model.compile(
        optimizer=Adam(learning_rate=0.001),
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy']
    )
    return model

第三步:训练并保存模型:

python 复制代码
def main():
    # 加载数据
    X, y, tokenizer, le = load_and_preprocess_data('Clothing_Reviews.csv')
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # 构建模型
    model = build_model(vocab_size=20000, max_len=200)
    model.summary()

    # 训练模型
    history = model.fit(
        X_train, y_train,
        validation_data=(X_test, y_test),
        epochs=10,
        batch_size=64,
        callbacks=[EarlyStopping(monitor='val_loss', patience=3)],
        verbose=1
    )
    print(f"history: {history}")
    # 评估模型
    # plot_history(history)
    loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
    print(f'测试集准确率: {accuracy:.2f}')

    # 保存模型和tokenizer
    model.save('sentiment_lstm_5class.h5')
    with open('tokenizer.pickle', 'wb') as handle:
        pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
    print("模型和tokenizer已保存")
    # 保存label encoder
    with open('label_encoder.pickle', 'wb') as handle:
        pickle.dump(le, handle, protocol=pickle.HIGHEST_PROTOCOL)

至此,根据训练集训练的模型保存完毕。要想使用训练保持好的模型进行数据预测,需要新建一个预测的方法:

python 复制代码
import numpy as np
import pickle

from keras.src.saving import load_model
from keras.src.utils import pad_sequences
from sklearn.preprocessing import LabelEncoder


class SentimentPredictor:
    def __init__(self, model_path, tokenizer_path, label_encoder_path=None, max_len=200):
        """初始化预测器"""
        self.model = load_model(model_path)
        with open(tokenizer_path, 'rb') as handle:
            self.tokenizer = pickle.load(handle)
        with open(label_encoder_path, 'rb') as handle:
            self.label_encoder = pickle.load(handle)
        self.max_len = max_len

    def preprocess_text(self, text):
        """预处理文本"""
        sequence = self.tokenizer.texts_to_sequences([text])
        padded = pad_sequences(sequence, maxlen=self.max_len, truncating='post')
        return padded

    def predict_sentiment(self, text, verbose=False):
        """预测情感分值(1-5)"""
        # 预处理
        padded_sequence = self.preprocess_text(text)

        # 预测
        prediction = self.model.predict(padded_sequence, verbose=0)
        predicted_class = np.argmax(prediction, axis=1)

        # 转换回原始标签(1-5)
        predicted_score = self.label_encoder.inverse_transform(predicted_class)[0]

        if verbose:
            print(f"评论: {text}")
            print(f"预测情感分值: {predicted_score}")
            print("各类别概率:")
            for i, prob in enumerate(prediction[0]):
                print(f"{i + 1}分: {prob:.4f}")
            print("-" * 50)

        return predicted_score, prediction[0]

这个类封装了读取加载模型、使用模型进行预测的方法,调用是传入已经保持的模型路径即可。使用实例:

python 复制代码
# 初始化预测器
predictor = SentimentPredictor(
    model_path='sentiment_lstm_5class.h5',
    tokenizer_path='tokenizer.pickle',
    label_encoder_path='label_encoder.pickle'
)

# 测试评论
test_reviews = [
    "This product is absolutely amazing! Best purchase ever!",
    "The item was okay, but not worth the price.",
    "Terrible quality. Would not recommend to anyone.",
    "It's decent for the price, though it has some flaws.",
    "I'm completely satisfied with this purchase. It exceeded all my expectations!"
]

# 批量预测
for review in test_reviews:
    score, probs = predictor.predict_sentiment(review, verbose=True)
    print(f"{review}: 预测情感分值: {score},准确率: {np.max(probs) * 100:.2f}%")

# 预测单个评论
sample_review = "The product was good but the delivery took too long."
score, probs = predictor.predict_sentiment(sample_review, verbose=True)
print(f"{sample_review}: 预测情感分值: {score},准确率: {np.max(probs) * 100:.2f}%")
相关推荐
源于花海20 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
不懒不懒1 天前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6001 天前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
小鸡吃米…1 天前
机器学习中的代价函数
人工智能·python·机器学习
咋吃都不胖lyh1 天前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
Ryan老房1 天前
无人机航拍图像标注-从采集到训练全流程
yolo·目标检测·机器学习·计算机视觉·目标跟踪·无人机
Learn Beyond Limits1 天前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
自可乐1 天前
LangGraph从入门到精通:构建智能Agent的完整指南
人工智能·python·机器学习
jay神1 天前
森林火灾检测数据集
算法·机器学习·目标跟踪
Cemtery1161 天前
Day40 早停策略和模型权重的保存
人工智能·python·深度学习·机器学习