机器学习:使用LSTM训练情感分析模型

背景:电商平台收到了许多关于宝贝的评论,需要自动从大量的数据中分析出各种情感的用户评论,并实时给出预警和提醒。

数据格式:

数据中最重要的两列:Review Text 和Rating,一个是评论内容一个是评分。

第一步:先进行数据处理:

python 复制代码
def load_and_preprocess_data(filepath):
    """加载并预处理数据"""
    df = pd.read_csv(filepath)
    texts = df['Review Text'].values
    labels = df['Rating'].values

    # 标签编码 (1-5 -> 0-4)
    le = LabelEncoder()
    labels = le.fit_transform(labels)

    # 文本序列化
    tokenizer = Tokenizer(num_words=20000, oov_token="<OOV>")
    tokenizer.fit_on_texts(texts)
    sequences = tokenizer.texts_to_sequences(texts)
    padded_sequences = pad_sequences(sequences, maxlen=200, truncating='post')

    return padded_sequences, labels, tokenizer, le

加载数据,并将数据序列化。

第二步:利用LSTM建立模型的结构,设置数据嵌入的向量维度:

python 复制代码
def build_model(vocab_size, max_len, embedding_dim=128):
    """构建LSTM模型"""
    model = Sequential([
        Embedding(vocab_size, embedding_dim, input_length=max_len),
        Bidirectional(LSTM(64, return_sequences=True)),
        Dropout(0.5),
        LSTM(32),
        Dropout(0.5),
        Dense(64, activation='relu'),
        Dropout(0.5),
        Dense(5, activation='softmax')
    ])

    model.compile(
        optimizer=Adam(learning_rate=0.001),
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy']
    )
    return model

第三步:训练并保存模型:

python 复制代码
def main():
    # 加载数据
    X, y, tokenizer, le = load_and_preprocess_data('Clothing_Reviews.csv')
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # 构建模型
    model = build_model(vocab_size=20000, max_len=200)
    model.summary()

    # 训练模型
    history = model.fit(
        X_train, y_train,
        validation_data=(X_test, y_test),
        epochs=10,
        batch_size=64,
        callbacks=[EarlyStopping(monitor='val_loss', patience=3)],
        verbose=1
    )
    print(f"history: {history}")
    # 评估模型
    # plot_history(history)
    loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
    print(f'测试集准确率: {accuracy:.2f}')

    # 保存模型和tokenizer
    model.save('sentiment_lstm_5class.h5')
    with open('tokenizer.pickle', 'wb') as handle:
        pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
    print("模型和tokenizer已保存")
    # 保存label encoder
    with open('label_encoder.pickle', 'wb') as handle:
        pickle.dump(le, handle, protocol=pickle.HIGHEST_PROTOCOL)

至此,根据训练集训练的模型保存完毕。要想使用训练保持好的模型进行数据预测,需要新建一个预测的方法:

python 复制代码
import numpy as np
import pickle

from keras.src.saving import load_model
from keras.src.utils import pad_sequences
from sklearn.preprocessing import LabelEncoder


class SentimentPredictor:
    def __init__(self, model_path, tokenizer_path, label_encoder_path=None, max_len=200):
        """初始化预测器"""
        self.model = load_model(model_path)
        with open(tokenizer_path, 'rb') as handle:
            self.tokenizer = pickle.load(handle)
        with open(label_encoder_path, 'rb') as handle:
            self.label_encoder = pickle.load(handle)
        self.max_len = max_len

    def preprocess_text(self, text):
        """预处理文本"""
        sequence = self.tokenizer.texts_to_sequences([text])
        padded = pad_sequences(sequence, maxlen=self.max_len, truncating='post')
        return padded

    def predict_sentiment(self, text, verbose=False):
        """预测情感分值(1-5)"""
        # 预处理
        padded_sequence = self.preprocess_text(text)

        # 预测
        prediction = self.model.predict(padded_sequence, verbose=0)
        predicted_class = np.argmax(prediction, axis=1)

        # 转换回原始标签(1-5)
        predicted_score = self.label_encoder.inverse_transform(predicted_class)[0]

        if verbose:
            print(f"评论: {text}")
            print(f"预测情感分值: {predicted_score}")
            print("各类别概率:")
            for i, prob in enumerate(prediction[0]):
                print(f"{i + 1}分: {prob:.4f}")
            print("-" * 50)

        return predicted_score, prediction[0]

这个类封装了读取加载模型、使用模型进行预测的方法,调用是传入已经保持的模型路径即可。使用实例:

python 复制代码
# 初始化预测器
predictor = SentimentPredictor(
    model_path='sentiment_lstm_5class.h5',
    tokenizer_path='tokenizer.pickle',
    label_encoder_path='label_encoder.pickle'
)

# 测试评论
test_reviews = [
    "This product is absolutely amazing! Best purchase ever!",
    "The item was okay, but not worth the price.",
    "Terrible quality. Would not recommend to anyone.",
    "It's decent for the price, though it has some flaws.",
    "I'm completely satisfied with this purchase. It exceeded all my expectations!"
]

# 批量预测
for review in test_reviews:
    score, probs = predictor.predict_sentiment(review, verbose=True)
    print(f"{review}: 预测情感分值: {score},准确率: {np.max(probs) * 100:.2f}%")

# 预测单个评论
sample_review = "The product was good but the delivery took too long."
score, probs = predictor.predict_sentiment(sample_review, verbose=True)
print(f"{sample_review}: 预测情感分值: {score},准确率: {np.max(probs) * 100:.2f}%")
相关推荐
WBluuue25 分钟前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
赴3351 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
一车小面包1 小时前
机器学习--决策树
决策树·机器学习
小艳加油2 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
Silence zero3 小时前
day43_2025-08-17
人工智能·深度学习·机器学习
学行库小秘3 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归
Coovally AI模型快速验证4 小时前
SOD-YOLO:基于YOLO的无人机图像小目标检测增强方法
人工智能·yolo·目标检测·机器学习·计算机视觉·目标跟踪·无人机
音视频牛哥5 小时前
从「行走」到「思考」:机器人进化之路与感知—决策链路的工程化实践
机器学习·机器人·音视频开发
数据智能老司机8 小时前
面向企业的图学习扩展——面向图的传统机器学习
算法·机器学习
星期天要睡觉9 小时前
机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
人工智能·机器学习·矩阵