LlamaFactory——如何使用魔改后的模型

需求来源:有时我们可能想在llamafactory框架支持的模型上进行一些改动,例如修改forward()方法等,修改方法我们可以通过继承Transformers库中相应的class并重写相应的方法即可,那我们如何使用自己的模型呢?

首先,我们需要定位模型初始化的相关代码,具体路径为:LLaMA-Factory-main/src/llamafactory/model/loader.py

python 复制代码
# 大致在169行的位置
model = load_class.from_pretrained(**init_kwargs)

上述代码实现了模型的初始化,其中load_class是OrderDict的一个子类,功能主要是根据config的类型找到对应模型class,例如Qwen2VLConfig(源码:transformers/models/qwen2_vl/configuration_qwen2_vl.py)对应Qwen2VLForConditionalGeneration(源码:transformers/models/qwen2_vl/modeling_qwen2_vl.py),本质上类似于字典,那我们只需要把相应的值替换为我们自己的模型即可,具体代码如下:

python 复制代码
load_class.register(type(config), YourCustomModelClass, exist_ok=True)
model = load_class.from_pretrained(**init_kwargs)

使用load_class的register()方法,把模型class替换为自己的模型即可,一定注意参数exist_ok要设置为True,才能覆写已有Config类对应的模型,不然会报错。

相关推荐
非优秀程序员2 分钟前
开发人员如何使用在自己的系统中对接 Nano Banana 【完整教程】
人工智能
阿三08126 分钟前
钉钉 AI 深度赋能制造业 LTC 全流程:以钉钉宜搭、Teambition 为例
人工智能·低代码·钉钉·teambition
摩羯座-185690305946 分钟前
京东商品评论接口技术实现:从接口分析到数据挖掘全方案
人工智能·数据挖掘
格调UI成品17 分钟前
智能制造新视角:工业4.0中,数字孪生如何优化产品全生命周期?
人工智能·工业4.0
机器学习之心29 分钟前
PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题,Matlab实现
人工智能·神经网络·matlab·物理信息神经网络·二阶常微分方程
zandy101132 分钟前
LLM与数据工程的融合:衡石Data Agent的语义层与Agent框架设计
大数据·人工智能·算法·ai·智能体
大千AI助手38 分钟前
梯度消失问题:深度学习中的「记忆衰退」困境与解决方案
人工智能·深度学习·神经网络·梯度·梯度消失·链式法则·vanishing
计算机编程小央姐39 分钟前
数据安全成焦点:基于Hadoop+Spark的信用卡诈骗分析系统实战教程
大数据·hadoop·python·spark·毕业设计·课程设计·dash
研梦非凡1 小时前
CVPR 2025|无类别词汇的视觉-语言模型少样本学习
人工智能·深度学习·学习·语言模型·自然语言处理
seegaler1 小时前
WrenAI:开源革命,重塑商业智能未来
人工智能·microsoft·ai