PaddleOCR本地部署 (Python+Flask)

查看配置:

win10系统+Python 3.9.13 + NVIDIA GeForce RTX 3080 Ti

安装环境:
1)下载 CUDA Toolkit 12.6
2)安装 CUDA Toolkit

查看是否安装成功

powershell 复制代码
nvcc --version
3)安装 PaddlePaddle GPU 版本(配合 CUDA 12.6)

PaddlePaddle安装指令

查看 PaddlePaddle 版本:

powershell 复制代码
import paddle
print(paddle.__version__)
4)安装paddleocr

虚拟环境安装:

powershell 复制代码
# 创建并激活虚拟环境
python -m venv venv
venv\Scripts\activate

# 安装 paddleocr 到当前虚拟环境中
pip install paddleocr

# 或者指定国内镜像
pip install paddleocr -i https://pypi.tuna.tsinghua.edu.cn/simple 

查看paddleocr版本:

powershell 复制代码
import paddleocr
print(paddleocr.__version__)

版本错误可安装指定版本:

powershell 复制代码
pip install paddleocr==2.10.0
目录
powershell 复制代码
TestPaddle/
├── ocr_server.py
├── ch_PP-OCRv4_det_server_infer
|	├── inference.pdiparams
|	├── inference.pdiparams.info
|	└── inference.pdmodel
├── ch_PP-OCRv4_rec_server_infer
|	├── inference.pdiparams
|	├── inference.pdiparams.info
|	└── inference.pdmodel
└── cls
|	├── inference.pdiparams
|	├── inference.pdiparams.info
|	└── inference.pdmodel
└── 001.jpg
ocr_server.py:
python 复制代码
from flask import Flask, request, jsonify
from paddleocr import PaddleOCR
import cv2
import os
import time
import numpy as np
import json
from datetime import datetime
import requests
import urllib.parse

# 测试命令:curl "http://localhost:8082/image-ocr?templateCode=23&path=001.jpg"
# 现场 虚拟环境激活  py38\Scripts\activate
app = Flask(__name__)

# # 获取当前脚本所在目录作为基础路径
BASE_DIR = os.path.dirname(os.path.abspath(__file__))

# 初始化 OCR 引擎(使用本地模型路径)
ocr_engine = PaddleOCR(
    use_angle_cls=False,
    lang="ch",
    det_model_dir=os.path.join(BASE_DIR, 'ch_PP-OCRv4_det_server_infer'),
    rec_model_dir=os.path.join(BASE_DIR, 'ch_PP-OCRv4_rec_server_infer'),
    cls_model_dir=os.path.join(BASE_DIR, 'cls'),
    use_gpu=True,
    use_pdserving=False,
    det_limit_side_len=3264,
    det_db_thresh=0.8,
    det_db_box_thresh=0.6,
    det_db_unclip_ratio=3,
    rec_image_shape="3, 48, 64",
    e2e_limit_side_len=3264,
    e2e_pgnet_score_thresh=0.0001,
    download_model=False
)

@app.route('/image-ocr', methods=['GET'])
def image_ocr():
    try:
        # 获取查询参数
        template_code = request.args.get('templateCode')
        image_path = request.args.get('path')

        # 检查参数是否为空
        if not image_path:
            return jsonify({
                'Status': 'Error',
                'Message': 'Missing required parameter: path',
                'ReceivedAt': get_current_time_with_ms()
            }), 400

        # 可选:打印 templateCode(但不参与 OCR 处理)
        print(f"Template Code: {template_code}")

        # # 检查图像是否存在
        # if not os.path.exists(image_path):
        #     return jsonify({
        #         'Status': 'Error',
        #         'Message': f'Image file does not exist: {image_path}',
        #         'ReceivedAt': get_current_time_with_ms()
        #     }), 400

        # 读取图像
        # img = cv2.imread(image_path)
        img = read_image(image_path)
        if img is None:
            return jsonify({
                'Status': 'Error',
                'Message': 'Failed to load image.',
                'ReceivedAt': get_current_time_with_ms()
            }), 400

        # 设置边缘裁剪距离
        gap = 10
        closingPix = 5

        gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        height, width = gray_image.shape[:2]
        # 设置边缘10个像素为255
        height, width = gray_image.shape[:2]
        gray_image[:, :gap] = 255
        gray_image[:, width - 10:] = 255
        gray_image[:gap, :] = 255
        gray_image[height - gap:, :] = 255
        # 二值化处理
        _, binary = cv2.threshold(gray_image, 254, 255, cv2.THRESH_BINARY_INV)
        # 先膨胀5次,再腐蚀5次
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
        morphed = cv2.dilate(binary, kernel, iterations=closingPix)
        morphed = cv2.erode(morphed, kernel, iterations=closingPix)
        # 寻找连通域
        num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(morphed, connectivity=8)
        # 收集所有灰度为 0 的区域对应的矩形(排除背景)
        rectangles = []
        for i in range(1, num_labels):  # 从1开始跳过背景
            x, y, w, h, _ = stats[i]
            rectangles.append((x, y, w, h))
            # print("Rectangle", i)

        # 按照先 y(行),再 x(列)排序
        merged_rects_sorted = sorted(rectangles, key=lambda r: (r[1], r[0]))

        sum_message = ""
        final_message_parts = []
        for idx, rect in enumerate(merged_rects_sorted, start=1):
            x, y, w, h = rect
            # 创建一个全白的图像(与原图大小一致)
            mask = np.ones_like(img) * 255  # 灰度图为 255 的白色背景图像
            # 将 rect 区域替换为原图中的内容
            mask[y:y + h, x:x + w] = img[y:y + h, x:x + w]
            # img = mask
            # cv2.imwrite("test Rectangle"+str(idx)+".jpeg", mask)
            print(f"Rectangle {idx}: x={x}, y={y}, w={w}, h={h}")


            # 执行 OCR
            result = ocr_engine.ocr(mask, cls=False)

            # 格式化结果
            message_lines = []
            for line in result:
                if line is not None:
                    for word_info in line:
                        text = word_info[1][0]
                        coords = word_info[0]
                        coord_str = ",".join([f"({int(x)},{int(y)})" for x, y in coords])
                        message_lines.append(f"{text}:{coord_str}")

            message = "Rectangle"+str(idx)+"{" + ";".join(message_lines) + "}"
            sum_message = sum_message + message
        return jsonify({
            'Status': 'Success',
            'Message': sum_message,
            'ReceivedAt': get_current_time_with_ms()
        })

    except Exception as e:
        return jsonify({
            'Status': 'Error',
            'Message': str(e),
            'ReceivedAt': get_current_time_with_ms()
        }), 500



def get_current_time_with_ms():
    """返回当前系统时间,格式为 YYYY-MM-DD HH:MM:SS.sss"""
    return time.strftime('%Y-%m-%d %H:%M:%S.') + f"{int(time.time() * 1000) % 1000:03d}"




def read_image(image_source):
    """
    读取图像,支持 HTTP URL 和本地路径
    :param image_source: 图像地址,可以是 URL 或本地路径
    :return: OpenCV 图像对象,失败返回 None
    """
    if urllib.parse.urlparse(image_source).scheme in ('http', 'https'):
        # 是网络URL,使用 requests 下载
        try:
            response = requests.get(image_source, timeout=10)
            response.raise_for_status()
            image_array = np.frombuffer(response.content, dtype=np.uint8)
            image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
        except Exception as e:
            print(f"读取网络图像失败: {e}")
            return None
    else:
        # 当作本地路径处理
        if os.path.exists(image_source):
            image = cv2.imread(image_source)
        else:
            print(f"本地路径不存在: {image_source}")
            return None
    return image


if __name__ == '__main__':
    app.run(host='0.0.0.0', port=8082, threaded=True)

测试:

相关推荐
Hard but lovely几秒前
C/C++ ---条件编译#ifdef
c语言·开发语言·c++
董世昌412 分钟前
js怎样控制浏览器前进、后退、页面跳转?
开发语言·前端·javascript
C嘎嘎嵌入式开发11 分钟前
deepseek-r1大模型的本地部署
人工智能·python·神经网络·机器学习
柯南二号14 分钟前
【大前端】【Android】用 Python 脚本模拟点击 Android APP —— 全面技术指南
android·前端·python
南棱笑笑生15 分钟前
20251211给飞凌OK3588-C开发板跑飞凌Android14时让OV5645摄像头以1080p录像
c语言·开发语言·rockchip
码界奇点18 分钟前
基于Django与Vue.js的RBAC权限管理系统设计与实现
vue.js·python·车载系统·django·毕业设计·源代码管理
翔云 OCR API19 分钟前
赋能文档的数字化智能处理:通用文字/文档/合同识别接口
开发语言·人工智能·python·计算机视觉·ocr
电饭叔19 分钟前
如何代码化,两点之间的距离
笔记·python·算法
hoiii18728 分钟前
MATLAB实现HOG特征提取与SVM行人检测
开发语言·支持向量机·matlab
JIngJaneIL39 分钟前
基于Java酒店管理系统(源码+数据库+文档)
java·开发语言·数据库·vue.js·spring boot