AI 编程下的舒适区不能一直呆着

上周和 GZ 大佬在群里吹水,聊到 AI 编程,其中他所在的大厂已经全面推行 Cursor,他提到在 AI 时代下依赖 AI 会导致程序员失去思考力和代码能力。

虽然 GZ 的观点有些尖锐,但其核心表述的:过度依赖这类 AI 工具,可能会导致程序员的独立思考能力和实际编码能力下降。 是有道理的,人都是有惰性的,由简入奢易,由奢入简难

AI 给编程带来了「捷径」和「舒适区」。有即时的满足感,有认知负载的降低,还有我好像什么都会了的错觉。

  • 即时满足感: AI工具能迅速生成代码、解答疑问,这种即时满足感是非常诱人的。就像以前需要自己做饭(从买菜、洗菜、切菜到烹饪),现在可以直接点外卖,省时省力,结果直接呈现。
  • 认知负荷降低: 思考是耗能的。AI 工具在很多时候替我们完成了初步的思考和构建工作,大大降低了认知负荷。大脑天然倾向于节能,所以会不自觉地依赖这种轻松模式。
  • 我好像什么都会了的错觉: 有了AI的辅助,很多以前觉得困难或耗时的任务变得简单,这容易让人产生一种「能力快速提升」的错觉,从而更愿意待在这个由AI构建的「舒适区」里。

美国心理学家 NoelTichy 提出的理论人类对外部世界的认识可分为三个区域:舒适区,学习区,恐慌区。

参考下面这张图:

图片来源:即梦 AI 生成

我们天生是喜欢舒适区的,有在 AI 的加持下慢慢滑向依赖的自然趋势。

  • 习惯的养成: 一旦习惯了 AI 带来的便利,就很难再回到过去那种凡事亲力亲为的「简朴」状态。第一次用 AI 生成复杂函数可能还会仔细研究,第十次可能就直接 Accepted 了。惰性会让我们不自觉地选择最省力的方式。
  • 「温水煮青蛙」效应: 思考能力和编码能力的退化,往往不是一蹴而就的,而是像温水煮青蛙一样,在不知不觉中慢慢发生的。每次都依赖一点点,每次都少思考一点点,日积月累,当真正需要独立面对复杂问题时,才发现「内功」已经荒废了。
  • 对「不便」的容忍度降低: 习惯了 AI 的「秒回」和「全能」,一旦遇到 AI 无法解决或需要自己深入研究的问题,可能会更容易感到沮丧、不耐烦,甚至选择回避。

当我们真的养成了这种依赖的习惯,适应了这种舒服区,就会面对能力退化后的困境

  • 核心技能的生疏: 长期依赖 AI 完成编码和调试,会导致对编程语言特性、底层原理、算法数据结构、系统设计等核心技能的生疏。就像长期开车的人,突然让他走一段远路,可能会觉得非常吃力。
  • 问题解决能力的下降: 独立分析问题、定位问题、解决问题的能力,是在一次次「啃硬骨头」的过程中锻炼出来的。如果这个过程被 AI 替代,那么这种宝贵的实战经验就会缺失。当 AI 「失灵」或给出错误方案时,便会束手无策。
  • 创新能力的抑制: 真正的创新往往源于对问题的深刻理解和多角度的尝试。如果满足于AI给出的「标准答案」,就可能失去探索更优解或全新解决方案的动力和能力。
  • 学习动力的削弱: 「反正有AI」,这种心态可能会削弱一些人主动学习新知识、钻研深层技术的动力。因为「奢华」的生活方式似乎唾手可得,何必再去「简朴」地刻苦修炼呢?

就像我们家包包公主说的,这算不算「没苦硬吃」呢?

小朋友的视角不一样,也很形象。我们再深入思考一下:

从某种程度上说,如果 AI 已经能完美、高效地解决一些重复性的、模式化的、或者我们已经非常熟悉且没有太多新学习价值的问题,我们还非要「绕过」AI,坚持用原始的、低效的方式去「硬磕」,那确实有点「没苦硬吃」的味道。这就像明明有洗衣机,还非要每一件衣服都手洗,只为了「体验劳动的艰辛」,效率上肯定是不划算的。

但是,这里面有个核心的思考:我们「吃苦」的目的是什么?

比如,AI 能快速生成一个标准的 CRUD 代码框架,我们非要一行一行手动敲,而且这个过程对我们来说已经没有新的知识增量了,那这种「苦」可能就真的是「没必要硬吃」。时间应该花在更有价值的地方。

如果是为了「锻炼核心能力」、「深化理解」、「探索未知」而吃苦:

  • 打地基的苦: 对于初学者,或者在学习新技术、新领域时,有些基础的「苦」是必须吃的。比如,亲手搭建环境、理解底层原理、调试简单的错误。这个过程 AI 可以辅助,但不能完全替代,因为这是建立认知框架和培养解决问题直觉的过程。直接跳过,地基不牢。
  • 理解「所以然」的苦: AI 给出了一个方案,我们不满足于「知其然」,而是要去深究「所以然」------它为什么这么写?有没有其他方案?优劣何在?这个思考和验证的过程,可能需要查阅资料、动手实验,是「苦」的,但这种「苦」能让我们真正掌握知识,而不是停留在表面。
  • 攻坚克难的苦: 面对复杂的、AI 也难以完美解决的、或者需要创新性思维的问题时,我们需要自己去分析、设计、试错。这个过程无疑是「苦」的,但正是这种「苦」孕育了核心竞争力和真正的技术突破。
  • 保持「手感」和「警惕性」的苦: 就像运动员需要日常训练来保持状态一样,程序员偶尔也需要「刻意练习」一些基础技能,或者对AI的输出进行严格的审视和重构,以保持对代码的敏感度和对潜在问题的警惕性。这种「苦」是为了防止能力退化。

明明有更优解(AI能完美胜任且无损学习),却固执地选择低效、重复且对能力提升帮助不大的方式。这是一种低效的勤奋 ,属于没苦硬吃。为了掌握核心技能、深化理解、培养批判性思维、解决复杂问题而进行的有目的的、高价值的努力 。这是一种战略性的投入。不是没苦硬吃。

回到「由简入奢易,由奢入简难」和「人的惰性」

正是因为惰性的存在,我们很容易滑向完全依赖 AI 的「奢华」生活,从而不自觉地回避了那些必要的、能提升核心能力的「苦」 。这时候,有意识地去「吃一些必要的苦」,就不是「没苦硬吃」,而是对抗惰性、保持清醒、主动投资未来的表现。

举个例子:

  • AI能帮我们写单元测试。如果我们只是为了应付覆盖率,让 AI 生成然后看都不看,那可能会错过很多理解代码逻辑和边界情况的机会。
  • 但如果我们让 AI 生成初步的测试用例,然后再仔细分析这些用例是否覆盖了所有关键逻辑、边界条件、异常情况,并在此基础上进行补充和优化,甚至思考如何设计更健壮的被测试代码------这个过程虽然也「苦」,但价值巨大。

那如何对抗这种「人性」?

正因为「惰性」和「由简入奢易,由奢入简难」是人性的一部分,所以对抗它需要刻意的练习

1.保持警惕意识: 时刻提醒自己,AI 是工具,不是替代品。享受便利的同时,要警惕能力滑坡的风险。

2.刻意练习:

  • 主动「脱离」 AI : 对于一些核心模块或自己希望提升的领域,尝试不使用或少使用 AI,强迫自己独立思考和编码。
  • 深究 AI 的答案: 不满足于AI给出的结果,而是去理解它为什么这么做,它的原理是什么,有没有更好的方式。把 AI 的输出当成学习材料,而不是最终答案。
  • 复盘与总结: 即使使用了 AI,也要对过程和结果进行复盘,总结学到的东西和 AI 的局限性。

3.设定更高的目标: 将 AI 视为达到更高目标的「杠杆」,而不是满足于现有水平的「安乐椅」。比如,利用 AI 节省下来的时间去学习新的架构知识、去钻研更复杂的算法、去思考更有创造性的解决方案。让 AI 帮助我们去追求一种更高层次的、更依赖人类智慧的「奢华」。

4.强化元认知: 思考自己是如何思考的,学习自己是如何学习的。意识到自己可能陷入了惰性思维,并主动调整策略。

5.对「思考能力」和「代码能力」的重新定义

  • 思考能力: 可能从「如何从零开始解决问题」更多地转向「如何清晰地描述问题」、「如何将大问题分解给 AI」、「如何评估和整合 AI 提供的方案」、「如何在更高层面进行架构设计和技术决策」。
  • 代码能力: 可能从「熟练编写每一行具体代码」更多地转向「快速理解和修改 AI 生成的代码」、「保证代码质量、可维护性和安全性」、「进行有效的Code Review(即使是AI生成的代码)」。

AI 编程工具,确实像一把双刃剑。它带来的「即时满足感」和「认知负荷降低」,很容易就把我们拽进那个诱人的「舒适区」。毕竟,谁不爱走捷径呢?可问题也随之而来,长期依赖这种「外挂」,我们自己的「内功」------独立思考和编码能力,真可能在「温水煮青蛙」般的日常中,不知不觉就打了折扣。

当然,这也不是说我们就得跟 AI 划清界限,放着高效的工具不用,非得事事躬亲,那确实有点「低效勤奋」,甚至真成了「没苦硬吃」。关键在于,我们得想明白,哪些「苦」是值得吃的,是能真正提升我们核心竞争力的「战略性投入」。

  • 那些AI能完美胜任、重复性高且对我们知识增量有限的活儿,大胆交给 AI,这叫明智地利用工具,解放生产力
  • 但那些关乎「打地基」、深究「所以然」、需要「攻坚克难」的硬骨头,以及为了保持「手感」和「警惕性」的刻意练习------这些「苦」,恰恰是 AI 时代我们安身立命的本钱。它们能帮助我们构建真正的理解,培养批判性思维,并最终驾驭 AI,而不是被 AI 所定义

所以,面对AI,我们不能简单地「躺平」享受,也不能盲目地「排斥对抗」。更重要的是,要保持那份警惕意识,用刻意的练习去对抗人性的惰性

这不仅仅是关于代码怎么写得更快,更是关于我们如何重新定义自己的「思考能力」和「代码能力」,如何在 AI 的浪潮中,通过主动学习和深度思考,完成一次自我进化。说到底,AI 是工具,方向盘始终还是握在我们自己手里,是选择成为更智慧的「驾驶员」,还是满足于当一个「乘客」,这道题,得我们自己用心作答。

相关推荐
乱世刀疤13 分钟前
腾讯云推出云开发AI Toolkit,国内首个面向智能编程的后端服务
ai编程
Lilith的AI学习日记13 分钟前
n8n 中文系列教程_25.在n8n中调用外部Python库
开发语言·人工智能·python·机器学习·chatgpt·ai编程·n8n
猫头虎19 分钟前
DeepSeek‑R1-0528 重磅升级:蚂蚁百宝箱免费、无限量调用
aigc·ai编程·智能体·deepseek·deepseekr1‑0528·蚂蚁百宝箱·deepseek0528
扑克中的黑桃A1 小时前
阿里云-通义灵码:测试与实例展示
ai编程
Dolphin_海豚2 小时前
augment 无限续杯
前端·aigc·cursor
yaocheng的ai分身4 小时前
🧠 强化学习×编程:下一波 AI 革命的“隐藏关卡”?
cursor
极客小俊6 小时前
我还是老老实实地用Cursor AI~编程从此不再繁琐,一键生成代码,效率提升千倍!
ai编程
caoxiaoye7 小时前
一句话开发Chrome摸鱼插件
chrome·ai编程·腾讯云ai代码助手·codebuddy
fish_study_csdn9 小时前
PyCharm接入DeepSeek,实现高效AI编程
python·pycharm·ai编程
用户212841928599 小时前
突破资源限制:轻量级AI模型部署
ai编程