python学习day33

知识点回顾:

1.PyTorch和cuda的安装

2.查看显卡信息的命令行命令(cmd中使用)

3.cuda的检查

4.简单神经网络的流程

a.数据预处理(归一化、转换成张量)

b.模型的定义

i.继承nn.Module类

ii.定义每一个层

iii.定义前向传播流程

c.定义损失函数和优化器

d.定义训练流程

e.可视化loss过程

数据准备部分

预处理补充:

注意事项:

  1. 分类任务中,若标签是整数(如 0/1/2 类别),需转为long类型(对应 PyTorch 的torch.long),否则交叉熵损失函数会报错。

2.回归任务中,标签需转为float类型(如torch.float32)。

python 复制代码
#数据的准备
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np
import torch

#数据的加载
iris = load_iris()
X = iris.data
y = iris.target

#划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print(X_train.shape, X_test.shape)
print(y_train.shape, y_test.shape)

#归一化数据,深度学习对数据敏感
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

#数据转为张量
X_train = torch.FloatTensor(X_train)
X_test = torch.FloatTensor(X_test)
y_train = torch.LongTensor(y_train)
y_test = torch.LongTensor(y_test)

神经网络定义部分

python 复制代码
import torch    #导入PyTorch
import torch.nn as nn #导入神经网络模块
import torch.optim as optim #导入优化器

class MLP(nn.Module): #定义一个多层感知机模型
    def __init__(self): #初始化函数
        super(MLP, self).__init__() #调用父类的初始化函数
#前三行固定的,下面是自定义的

        self.fc1 = nn.Linear(4, 10) #第一层全连接层(输入到隐藏),输入维度为4,输出维度为10
        self.relu  = nn.ReLU()  #激活函数
        self.fc2 = nn.Linear(10, 3)   #第二层全连接层(隐藏到输出),输入维度为10,输出维度为3

    # 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率

    def forward(self, x):       #前向传播函数
        out = self.fc1(x)       #输入层
        out = self.relu(out)    #激活函数
        out = self.fc2(out)     #输出层
        return out
#实例化模型
model = MLP()

训练部分

python 复制代码
#模型训练(CPU)
#定义损失函数和优化器

#分类问题用交叉熵损失函数
criterion = nn.CrossEntropyLoss()

#随机梯度下降
optimizer = optim.SGD(model.parameters(), lr=0.01)

#训练模型
num_epochs= 20000 #训练轮数

#存储epoch损失值
losses = []

for epoch in range(num_epochs):
    #前向传播
    outputs = model.forward(X_train) #显式调用forward函数
    # outputs = model(X_train)  # 常见写法隐式调用forward函数,其实是用了model类的__call__方法
    loss = criterion(outputs, y_train) #outputs是模型预测,y_train真实标签

    #反向传播和优化
    optimizer.zero_grad()#清除梯度
    loss.backward() #反向传播计算梯度
    optimizer.step() #更新参数

    #记录损失值
    losses.append(loss.item())

    #打印损失值
    if (epoch+1) % 100 ==0:
        print(f"Epoch[{epoch+1}/{num_epochs}], Loss:{loss.item():.4f}")

结果可视化

python 复制代码
#可视化结果
import matplotlib.pyplot as plt

#可视化曲线
plt.plot(range(num_epochs), losses) #绘制损失函数曲线
plt.xlabel("epochs")
plt.ylabel("losses")
plt.title("losses vs epochs")
plt.show()

@浙大疏锦行

相关推荐
weixin_4707403631 分钟前
某算法的python执行汇编
汇编·python·算法
SHIPKING3932 小时前
【机器学习&深度学习】LMDeploy的分布式推理实现
人工智能·深度学习
mit6.8243 小时前
[RestGPT] docs | RestBench评估 | 配置与环境
人工智能·python
兔子的倔强4 小时前
Transformer在文本、图像和点云数据中的应用——经典工作梳理
人工智能·深度学习·transformer
Ice__Cai4 小时前
Flask 之 Cookie & Session 详解:用户状态管理
后端·python·flask·cookie·session
焊锡与代码齐飞4 小时前
嵌入式第三十五课!!Linux下的网络编程
linux·运维·服务器·开发语言·网络·学习·算法
lxmyzzs5 小时前
【图像算法 - 21】慧眼识虫:基于深度学习与OpenCV的农田害虫智能识别系统
人工智能·深度学习·opencv·算法·yolo·目标检测·计算机视觉
AI人工智能+5 小时前
表格识别技术:通过图像处理与深度学习,将非结构化表格转化为可编辑结构化数据,推动智能化发展
人工智能·深度学习·ocr·表格识别
WSSWWWSSW6 小时前
Seaborn数据可视化实战:Seaborn时间序列可视化入门
python·信息可视化·数据分析·matplotlib·seaborn
firshman_start6 小时前
文件包含的学习笔记
笔记·学习