锋哥原创的TensorFlow2 Python深度学习视频教程:
https://www.bilibili.com/video/BV1X5xVz6E4w/
课程介绍
本课程主要讲解基于TensorFlow2的Python深度学习知识,包括深度学习概述,TensorFlow2框架入门知识,以及卷积神经网络(CNN),循环神经网络(RNN),生成对抗网络(GAN),模型保存与加载等。
TensorFlow2 Python深度学习 - 使用Dropout层解决过拟合问题
之前的Fashion MINIST示例,我们会发现一个问题,训练数据准确率效果挺好,但是到了测试验证准确率就相对变差。这个其实就是过拟合了,原因就是训练过来的模型过于复杂。

我们在之前学习机器学习的时候,学过过拟合和欠拟合。
简单总结:
过拟合是模型过于复杂,导致训练数据表现好,但是测试数据表现就差。
欠拟合是模型过于简单,导致训练数据和测试数据表现都不好。
在神经网络里面,欠拟合问题很好解决,我们只需要增加层,增加每层的神经元,以及增加轮训训练次数即可。
解决过拟合的话,我们也有多种解决方案,适当的减少层,降低神经元数,以及我们今天要介绍的,使用Dropout丢弃层。
只需要在全连接之前,加一个Dropout丢弃层即可。
Dropout丢弃层是一种神经网络正则化技术,通过在训练阶段随机丢弃部分神经元,防止模型过拟合并提升泛化能力。

layers.Dropout(0.5), # 添加Dropout层来防止过拟合 随机丢弃50%的节点

我们重新运行测试,发现训练数据和验证数据效果都好很多了。