OramaCore 是您 AI 项目、答案引擎、副驾驶和搜索所需的 AI 运行时。它包括一个成熟的全文搜索引擎、矢量数据库、LLM界面和更多实用程序

一、软件介绍

文末提供程序和源码下载

OramaCore 是您的项目、答案引擎、副驾驶和搜索所需的 AI 运行时。

它包括一个成熟的全文搜索引擎、矢量数据库、LLM具有行动计划和推理功能的接口、用于根据数据编写和运行您自己的自定义代理的 JavaScript 运行时,以及更多实用程序。

二、Getting Started 开始

绝对简单的入门方法是按照您可以在此存储库中找到的 docker-compose.yml 文件进行作。

You can either clone the entire repo or setup oramasearch/oramacore:latest as image in your docker-compose.yml file under the oramacore service.
您可以克隆整个存储库,也可以在 oramacore 该服务下的 docker-compose.yml 文件中设置为 oramasearch/oramacore:latest 映像。

Then compile your configuration file and run it:
然后编译您的配置文件并运行它:

复制代码
docker compose up

This will create the following architecture, allowing you to perform high-performance RAG with little to zero configuration.
这将创建以下架构,允许您以很少甚至零的配置执行高性能 RAG。

An NVIDIA GPU is highly recommended for running the application. For production usage, we recommend using minimum one NVIDIA A100. Optimal configuration would include four NVIDIA H100.

强烈建议使用 NVIDIA GPU 来运行应用程序。对于生产用途,我们建议至少使用一个 NVIDIA A100。最佳配置将包括四个 NVIDIA H100 。

三、Available Dockerfiles 可用的 Dockerfile

Depending on your machine, you may want to use different Docker images.
根据您的计算机,您可能希望使用不同的 Docker 映像。

Application 应用 CPU/GPU CPU/图形处理器 Docker image Docker 镜像
OramaCore OramaCore 公司 X86_64 oramasearch/oramacore
OramaCore OramaCore 公司 ARM64 (Mac M series for example) ARM64(例如 Mac M 系列) oramasearch/oramacore-arm64
AI Server AI 服务器 Any CPU architecture, no CUDA access 任何 CPU 架构,无需 CUDA 访问 oramasearch/oramacore-ai-server
AI Server AI 服务器 Any CPU architecture, CUDA available 任何 CPU 架构,CUDA 可用 coming soon

Using the JavaScript SDK 使用 JavaScript SDK

You can install the official JavaScript SDK with npm:
你可以使用 npm 安装官方的 JavaScript SDK:

复制代码
npm i @orama/core

Then, you can start by creating a collection (a database index) with all of the data you want to perform AI search & experiences on:
然后,你可以开始创建一个集合(数据库索引),其中包含你想要执行AI搜索和体验的所有数据:

复制代码
import { OramaCoreManager } from "@orama/core";

const orama = new OramaCoreManager({
    url: "http://localhost:8080",
    masterAPIKey: "<master-api-key>", // The master API key set in your config file
});

const newCollection = await orama.createCollection({
    id: "products",
    writeAPIKey: "my-write-api-key", // A custom API key to perform write operations on your collection
    readAPIKey: "my-read-api-key", // A custom API key to perform read operations on your collection
});

Then, insert some data:
然后,插入一些数据:

复制代码
import { CollectionManager } from "@orama/core";

const collection = new CollectionManager({
    url: "http://localhost:8080",
    collectionID: "<COLLECTION_ID>",
    writeAPIKey: "<write_api_key>",
});

// You can insert a single document
await collection.insert({
    title: "My first document",
    content: "This is the content of my first document.",
});

// Or you can insert multiple documents by passing an array of objects
await collection.insert([
    {
        title: "My first document",
        content: "This is the content of my first document.",
    },
    {
        title: "My second document",
        content: "This is the content of my second document.",
    },
]);

OramaCore will automatically generate highly optimized embeddings for you and will store them inside its built-in vector database.
OramaCore 将为您自动生成高度优化的嵌入,并将其存储在其内置的向量数据库中。

Now you can perform vector, hybrid, full-text search, or let OramaCore decide which one is best for your specific query:
现在,您可以执行矢量、混合、全文搜索,或者让 OramaCore 决定哪一个最适合您的特定查询:

复制代码
import { CollectionManager } from "@orama/core";

const collection = new CollectionManager({
    url: "http://localhost:8080",
    collectionID: "<COLLECTION_ID>",
    readAPIKey: "<read_api_key>",
});

const results = await collection.search({
    term: "The quick brown fox",
    mode: "auto", // can be "fulltext", "vector", "hybrid", or "auto"
});

You can also perform Answer Sessions as you'd do on Perplexity or SearchGPT , but on your own data!
您还可以像在 Perplexity 或 SearchGPT 上一样执行 Answer Sessions,但使用您自己的数据!

复制代码
import { CollectionManager } from "@orama/core";

const collection = new CollectionManager({
    url: "http://localhost:8080",
    collectionID: "<COLLECTION_ID>",
    readAPIKey: "<read_api_key>",
});

const answerSession = collection.createAnswerSession({
    initialMessages: [
        { 
            role: "user",
            content: "How do I install OramaCore?"
        },
        {
            role: "assistant",
            content: "You can install OramaCore by pulling the oramasearch/oramacore:latest Docker image",
        },
    ],
    events: {
        onStateChange(state) {
            console.log("State changed:", state);
        },
    },
});

软件下载

夸克网盘分享

本文信息来源于GitHub作者地址:GitHub - oramasearch/oramacore: OramaCore is the AI runtime you need for your AI projects, answer engines, copilots, and search. It includes a fully-fledged full-text search engine, vector database, LLM interface, and many more utilities.

相关推荐
猫头虎8 分钟前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农25 分钟前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农25 分钟前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机27 分钟前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
盼小辉丶27 分钟前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
mit6.8241 小时前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫1 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域2 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
HAPPY酷2 小时前
给纯小白的Python操作 PDF 笔记
开发语言·python·pdf
GoGeekBaird3 小时前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github