深度学习复习笔记

深度前馈神经网络

卷积神经网络

Advanced卷积神经网络

Lightweight CNN

dwconv

squeezenet

这边右侧的e3是3x3卷积吧

SENet

在通道维度压一下,强迫各维度混合学习,再还原

ShuffleNet

Group Convolution在 AlexNet 中引入,用于将模型分布到两块 GPU 上。但这样某个通道的输出只能来自一小部分输入通道,这样阻止了通道之间的信息流

打乱通道就能交流了

CondenseNet

分组卷积存在通道之间的信息沟通不畅以及特征多样性不足的问题。CondenseNet提出的解决策略是在训练的过程中让模型选择更好的分组方式
自学习分组卷积可以分成两个阶段:浓缩阶段和优化阶段。其中浓缩阶段用于剪枝没用的特征,优化阶段用于优化剪枝之后的网络。

浓缩时,在训练该网络时使用了分组lasso正则项,会有 1/C 的特征被剪枝掉
CondenseNet的剪枝并不是直接将这个特征删除,而是通过掩码的形式将被剪枝的特征置0,因此在训练的过程中CondenseNet的时间并没有减少,反而会需要更多的显存用来保存掩码

EfficientNet

用NAS调模型宽度和深度

间隔损失

contrastive loss

其中d代表两个样本特征的欧氏距离,y为两个样本是否匹配的标签,y=1代表两个样本相似或者匹配,y=0则代表不匹配。margin为设定的阈值,这种损失函数主要是用在降维中,即本来相似的样本,在经过降维(特征提取)后,在特征空间中,两个样本仍旧相似;而原本不相似的样本,在经过降维后,在特征空间中,两个样本仍旧不相似。

Triplet Loss

输入是一个三元组 <a, p, n>

  • a: anchor,表示一个基准样本
  • p: positive, 与 a 是同一类别的样本,比如就是同一个人的照片
  • n: negative, 与 a 是不同类别的样本,比如就是不同人的照片

希望让a和p的距离尽可能小,而a和n的距离尽可能大

Center Loss

为了解决open set问题,即当训练集和测试集的类别不完全相同的情况

通过MSE做类似聚类的loss,保证最小化类内距离的同时保证特征可分,来提高特征之间的可判别性

L-Softmax

在softmax基础上将 theta 1 乘以正整数m

m越大,决策间隔越大

Modified Softmax

限制了一些条件:∥Wi∥=1,bi=0,由这些条件,可以得到修正的损失函数

相关推荐
li星野几秒前
打工人日报#20251109
笔记
dxnb227 分钟前
【Datawhale25年11月组队学习:hello-agents+Task1学习笔记】
人工智能·学习
点云SLAM10 分钟前
方差的迭代计算公式
大数据·深度学习·数据分析·概率论·数学原理·概论率
二进制星轨18 分钟前
Transofrmer架构详解与PyTorch实现(附代码讲解)
人工智能·pytorch·python
nenchoumi311924 分钟前
ROS2 Humble 笔记(四)ROS 的最小工作单元-- Node 节点
笔记·机器人·ros2
领航猿1号40 分钟前
DeepSeek-OCR 上下文光学压缩详解与本地部署及vLLM推理
人工智能·aigc·ocr
东方隐侠安全团队-千里1 小时前
第3节 RSA算法开启公钥加密时代
网络·人工智能·算法
骄傲的心别枯萎1 小时前
RV1126 NO.46:RV1126+OPENCV对视频流进行视频膨胀操作
人工智能·opencv·计算机视觉·音视频·rv1126
视觉AI1 小时前
如何查看 Linux 下正在运行的 Python 程序是哪一个
linux·人工智能·python