深度学习复习笔记

深度前馈神经网络

卷积神经网络

Advanced卷积神经网络

Lightweight CNN

dwconv

squeezenet

这边右侧的e3是3x3卷积吧

SENet

在通道维度压一下,强迫各维度混合学习,再还原

ShuffleNet

Group Convolution在 AlexNet 中引入,用于将模型分布到两块 GPU 上。但这样某个通道的输出只能来自一小部分输入通道,这样阻止了通道之间的信息流

打乱通道就能交流了

CondenseNet

分组卷积存在通道之间的信息沟通不畅以及特征多样性不足的问题。CondenseNet提出的解决策略是在训练的过程中让模型选择更好的分组方式
自学习分组卷积可以分成两个阶段:浓缩阶段和优化阶段。其中浓缩阶段用于剪枝没用的特征,优化阶段用于优化剪枝之后的网络。

浓缩时,在训练该网络时使用了分组lasso正则项,会有 1/C 的特征被剪枝掉
CondenseNet的剪枝并不是直接将这个特征删除,而是通过掩码的形式将被剪枝的特征置0,因此在训练的过程中CondenseNet的时间并没有减少,反而会需要更多的显存用来保存掩码

EfficientNet

用NAS调模型宽度和深度

间隔损失

contrastive loss

其中d代表两个样本特征的欧氏距离,y为两个样本是否匹配的标签,y=1代表两个样本相似或者匹配,y=0则代表不匹配。margin为设定的阈值,这种损失函数主要是用在降维中,即本来相似的样本,在经过降维(特征提取)后,在特征空间中,两个样本仍旧相似;而原本不相似的样本,在经过降维后,在特征空间中,两个样本仍旧不相似。

Triplet Loss

输入是一个三元组 <a, p, n>

  • a: anchor,表示一个基准样本
  • p: positive, 与 a 是同一类别的样本,比如就是同一个人的照片
  • n: negative, 与 a 是不同类别的样本,比如就是不同人的照片

希望让a和p的距离尽可能小,而a和n的距离尽可能大

Center Loss

为了解决open set问题,即当训练集和测试集的类别不完全相同的情况

通过MSE做类似聚类的loss,保证最小化类内距离的同时保证特征可分,来提高特征之间的可判别性

L-Softmax

在softmax基础上将 theta 1 乘以正整数m

m越大,决策间隔越大

Modified Softmax

限制了一些条件:∥Wi∥=1,bi=0,由这些条件,可以得到修正的损失函数

相关推荐
神经星星4 分钟前
【TVM 教程】在 TVM 中使用 Bring Your Own Datatypes
人工智能·深度学习·机器学习
import_random11 分钟前
[深度学习]transformer是什么(介绍)
深度学习
.Eyes20 分钟前
OBCP第二章 OceanBase 存储引擎高级技术学习笔记
笔记·学习·oceanbase
IMPYLH26 分钟前
Python 的内置函数 help
笔记·python
说私域32 分钟前
虚拟与现实交融视角下定制开发开源AI智能名片S2B2C商城小程序赋能新零售商业形态研究
人工智能·小程序·开源·零售
她说人狗殊途36 分钟前
神经网络基础讲解 一
人工智能·深度学习·神经网络
阿里云大数据AI技术37 分钟前
【新模型速递】PAI-Model Gallery云上一键部署MiniMax-M1模型
人工智能·llm·云计算
小张在编程38 分钟前
Python 深度学习基础:TensorFlow 入门——从张量到神经网络的实战指南
python·深度学习·tensorflow
胖墩会武术38 分钟前
【PyTorch项目实战】CycleGAN:无需成对训练样本,支持跨领域图像风格迁移
人工智能·pytorch·python
老周聊大模型1 小时前
ReAct Agent终极指南|LangChain实战×多工具调度×幻觉消除(
人工智能·程序员