深度学习|pytorch基本运算-广播失效

【1】引言

前序文章中,已经学习了pytorch基本运算中的生成随机张量、生成多维张量,以及张量的变形、加减和广播运算。

今天的文章在之前学习的基础上,进一步探索。

前序文章链接为:

深度学习|pytorch基本运算-CSDN博客

【2】广播失效

前序文章在最后给出了广播运算的基础代码:

python 复制代码
# 导入包
import torch
# 生成多为维张量
y=torch.tensor([1,2,3])
z=torch.tensor([
    [3],
    [2],
    [1]
])
#打印
print('y=',y)
print('z=',z)
# 
a=y+z
print('a=',a)

在这个项目中,行向量y会沿着行广播(复制),列向量z会沿着列广播(复制),实际运行效果和下述代码一样:

python 复制代码
# 导入包
import torch
# 生成多为维张量
y=torch.tensor([[1,2,3],
               [1,2,3],
                [1,2,3]])
z=torch.tensor([
    [3,3,3],
    [2,2,2],
    [1,1,1]
])
#打印
print('y=',y)
print('z=',z)
#
a=y+z
print('a=',a)

实际运行后的效果为:

++图1 广播运行效果++

但实际上,如果稍微修改代码,就会有广播失效的情况:

python 复制代码
# 导入包
import torch
# 生成多为维张量
y=torch.tensor([[1,2,3,1],
               [1,2,3,1],
                [1,2,3,1]])
z=torch.tensor([
    [3,3,3],
    [2,2,2],
    [1,1,1]
])
#打印
print('y=',y)
print('z=',z)
#
a=y+z
print('a=',a)

上述代码运行后,会直接报错:

a=y+z

~^~

RuntimeError: The size of tensor a (4) must match the size of tensor b (3) at non-singleton dimension 1

这里报错的意思是:在非单例维度1上,第一个矩阵a有4个数,第二个矩阵b有3个数,无法匹配。

在pytorch中,对于维度的规定是:

在竖直方向是第0维度, 代码中的y和z都有3行,匹配;

在水平方向是第1维度, 代码中的y和z分别有4列和3列,不匹配,无法广播。

需要注意到报错信息中,a(4)和b(3)是python语言报错的惯用写法,实际对应的就是y(4)和z(3)。

真实的不匹配来源是:**矩阵y有4列数据,矩阵z有3列数据,矩阵z既不可能每一列都复制一遍来广播,也不可能任选一列复制来广播,所以无法广播;但对于单独的一列,则没有这样的烦恼,直接每一列都复制即可。**比如下述代码:

python 复制代码
# 导入包
import torch
# 生成多为维张量
y=torch.tensor([[1,2,3,1],
               [1,2,3,1],
                [1,2,3,1]])
z=torch.tensor([
    [3],
    [2],
    [1]
])
#打印
print('y=',y)
print('z=',z)
#
a=y+z
print('a=',a)

运行后的效果为:

++图2 单列多行广播运行效果++

上述情况是第1维度即列的原因造成的无法广播,如果修改第0维度即行来测试,有如下代码:

python 复制代码
# 导入包
import torch
# 生成多为维张量
y=torch.tensor([[1,2,3,1],
               [1,2,3,1],
                [1,2,3,1]])
z=torch.tensor([
    [3],
    [2],
    [1],
    [1]
])
#打印
print('y=',y)
print('z=',z)
#
a=y+z
print('a=',a)

代码运行后的报错为:

a=y+z

~^~

RuntimeError: The size of tensor a (3) must match the size of tensor b (4) at non-singleton dimension 0

和前述分析的原因一样:3行和4行不对应,无法广播。

矩阵y有3行数据,矩阵z有4行数据,矩阵y既不可能每一行都复制一遍来广播,也不可能任选一行复制来广播,所以无法广播。

【3】总结

探索了pytorch的基本运算中广播失效的情况及其原因。

相关推荐
leo__5205 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体5 小时前
云厂商的AI决战
人工智能
njsgcs5 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
知乎的哥廷根数学学派6 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch6 小时前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中6 小时前
第1章 机器学习基础
人工智能·机器学习
wyw00007 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI7 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云20107 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲7 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程