深度学习|pytorch基本运算-广播失效

【1】引言

前序文章中,已经学习了pytorch基本运算中的生成随机张量、生成多维张量,以及张量的变形、加减和广播运算。

今天的文章在之前学习的基础上,进一步探索。

前序文章链接为:

深度学习|pytorch基本运算-CSDN博客

【2】广播失效

前序文章在最后给出了广播运算的基础代码:

python 复制代码
# 导入包
import torch
# 生成多为维张量
y=torch.tensor([1,2,3])
z=torch.tensor([
    [3],
    [2],
    [1]
])
#打印
print('y=',y)
print('z=',z)
# 
a=y+z
print('a=',a)

在这个项目中,行向量y会沿着行广播(复制),列向量z会沿着列广播(复制),实际运行效果和下述代码一样:

python 复制代码
# 导入包
import torch
# 生成多为维张量
y=torch.tensor([[1,2,3],
               [1,2,3],
                [1,2,3]])
z=torch.tensor([
    [3,3,3],
    [2,2,2],
    [1,1,1]
])
#打印
print('y=',y)
print('z=',z)
#
a=y+z
print('a=',a)

实际运行后的效果为:

++图1 广播运行效果++

但实际上,如果稍微修改代码,就会有广播失效的情况:

python 复制代码
# 导入包
import torch
# 生成多为维张量
y=torch.tensor([[1,2,3,1],
               [1,2,3,1],
                [1,2,3,1]])
z=torch.tensor([
    [3,3,3],
    [2,2,2],
    [1,1,1]
])
#打印
print('y=',y)
print('z=',z)
#
a=y+z
print('a=',a)

上述代码运行后,会直接报错:

a=y+z

~^~

RuntimeError: The size of tensor a (4) must match the size of tensor b (3) at non-singleton dimension 1

这里报错的意思是:在非单例维度1上,第一个矩阵a有4个数,第二个矩阵b有3个数,无法匹配。

在pytorch中,对于维度的规定是:

在竖直方向是第0维度, 代码中的y和z都有3行,匹配;

在水平方向是第1维度, 代码中的y和z分别有4列和3列,不匹配,无法广播。

需要注意到报错信息中,a(4)和b(3)是python语言报错的惯用写法,实际对应的就是y(4)和z(3)。

真实的不匹配来源是:**矩阵y有4列数据,矩阵z有3列数据,矩阵z既不可能每一列都复制一遍来广播,也不可能任选一列复制来广播,所以无法广播;但对于单独的一列,则没有这样的烦恼,直接每一列都复制即可。**比如下述代码:

python 复制代码
# 导入包
import torch
# 生成多为维张量
y=torch.tensor([[1,2,3,1],
               [1,2,3,1],
                [1,2,3,1]])
z=torch.tensor([
    [3],
    [2],
    [1]
])
#打印
print('y=',y)
print('z=',z)
#
a=y+z
print('a=',a)

运行后的效果为:

++图2 单列多行广播运行效果++

上述情况是第1维度即列的原因造成的无法广播,如果修改第0维度即行来测试,有如下代码:

python 复制代码
# 导入包
import torch
# 生成多为维张量
y=torch.tensor([[1,2,3,1],
               [1,2,3,1],
                [1,2,3,1]])
z=torch.tensor([
    [3],
    [2],
    [1],
    [1]
])
#打印
print('y=',y)
print('z=',z)
#
a=y+z
print('a=',a)

代码运行后的报错为:

a=y+z

~^~

RuntimeError: The size of tensor a (3) must match the size of tensor b (4) at non-singleton dimension 0

和前述分析的原因一样:3行和4行不对应,无法广播。

矩阵y有3行数据,矩阵z有4行数据,矩阵y既不可能每一行都复制一遍来广播,也不可能任选一行复制来广播,所以无法广播。

【3】总结

探索了pytorch的基本运算中广播失效的情况及其原因。

相关推荐
xoliu11 分钟前
Pytorch核心基础入门
人工智能·pytorch·python
跨境卫士—小依4 分钟前
TikTok Shop 进化全解析,从内容驱动到品牌共建,抢占跨境新赛道
大数据·人工智能·跨境电商·亚马逊·防关联
一瞬祈望5 分钟前
ResNet50 图像分类完整实战(Notebook Demo + 训练代码)
人工智能·python·神经网络·数据挖掘
其美杰布-富贵-李6 分钟前
PyTorch Lightning Callback 指南
人工智能·pytorch·python·回调函数·callback
哥布林学者14 分钟前
吴恩达深度学习课程四:计算机视觉 第三周:检测算法 (四)YOLO 的完整传播过程
深度学习·ai
Mintopia23 分钟前
🤖 2025 年的人类还需要 “Prompt 工程师” 吗?
人工智能·llm·aigc
agicall.com24 分钟前
实时语音转文字设备在固话座机中的重要价值
人工智能·语音识别
aitoolhub26 分钟前
AI生成圣诞视觉图:从节日元素到创意落地的路径
人工智能·深度学习·自然语言处理·节日
神州问学28 分钟前
除了 DeepSeek-OCR,还有谁在“把字当图看”?
人工智能
Mintopia30 分钟前
意图驱动编程(Intent-Driven Programming)
人工智能·llm·aigc