【目标检测】检测网络中neck的核心作用

1. neck最主要的作用就是特征融合,融合就是将具有不同大小感受野的特征图进行了耦合,从而增强了特征图的表达能力。

2. neck决定了head的数量,进而潜在决定了不同尺度样本如何分配到不同的head,这一点可以看做是将整个网络的多尺度目标学习的负担,分散到了多个层级的特征图上。

3. neck将来自于backbone上的多个层级的特征图进行融合加工,增强其表达能力的同时,输出加工后并具有相同宽度的特征图以供head使用。

相关推荐
CareyWYR17 分钟前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散1330 分钟前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8241 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945191 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火2 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴3 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR4 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢4 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网
whaosoft-1434 小时前
51c自动驾驶~合集14
人工智能
Jinkxs4 小时前
自动化测试的下一站:AI缺陷检测工具如何实现“bug提前预警”?
人工智能·自动化