hive聚合函数多行合并

在数据仓库和大数据处理的场景中,Hive提供了强大的SQL查询能力,其中包括聚合函数用于处理和合并多行数据。本文将深入探讨Hive中的几种常见聚合函数及其在多行合并中的应用。

一、Hive中的常见聚合函数

Hive提供了多种聚合函数,这些函数可以将多行数据合并成单行数据。常见的聚合函数包括:

  1. COUNT:统计行数
  2. SUM:求和
  3. AVG:计算平均值
  4. MAX:求最大值
  5. MIN:求最小值
  6. COLLECT_SET:将一列的值去重后合并为集合
  7. COLLECT_LIST:将一列的值合并为列表
  8. CONCAT_WS:将一列的字符串值按指定分隔符合并为单个字符串

二、具体应用实例

1. 基本聚合函数

假设有一个表 transactions,结构如下:

复制代码
CREATE TABLE transactions (
    user_id INT,
    amount DOUBLE,
    transaction_date STRING
);

表中的数据如下:

user_id amount transaction_date
1 100.0 2023-01-01
1 150.0 2023-01-02
2 200.0 2023-01-01
2 50.0 2023-01-03

通过以下查询语句,我们可以统计每个用户的交易总额、平均交易额、最大交易额和最小交易额:

复制代码
SELECT
    user_id,
    SUM(amount) AS total_amount,
    AVG(amount) AS average_amount,
    MAX(amount) AS max_amount,
    MIN(amount) AS min_amount
FROM
    transactions
GROUP BY
    user_id;

查询结果如下:

user_id total_amount average_amount max_amount min_amount
1 250.0 125.0 150.0 100.0
2 250.0 125.0 200.0 50.0
2. 使用COLLECT_SET和COLLECT_LIST

如果我们希望收集每个用户所有的交易日期,并去除重复的日期,可以使用 COLLECT_SET

复制代码
SELECT
    user_id,
    COLLECT_SET(transaction_date) AS transaction_dates
FROM
    transactions
GROUP BY
    user_id;

查询结果如下:

user_id transaction_dates
1 ["2023-01-01", "2023-01-02"]
2 ["2023-01-01", "2023-01-03"]

如果需要保留所有交易日期的顺序(包括重复),可以使用 COLLECT_LIST

复制代码
SELECT
    user_id,
    COLLECT_LIST(transaction_date) AS transaction_dates
FROM
    transactions
GROUP BY
    user_id;

查询结果如下:

user_id transaction_dates
1 ["2023-01-01", "2023-01-02"]
2 ["2023-01-01", "2023-01-03"]
3. 使用CONCAT_WS进行字符串合并

如果希望将每个用户的交易日期合并为一个字符串,可以使用 CONCAT_WS函数:

复制代码
SELECT
    user_id,
    CONCAT_WS(',', COLLECT_LIST(transaction_date)) AS transaction_dates
FROM
    transactions
GROUP BY
    user_id;
​

查询结果如下:

user_id transaction_dates
1 2023-01-01,2023-01-02
2 2023-01-01,2023-01-03
相关推荐
isfox13 小时前
Google GFS 深度解析:分布式文件系统的开山之作
大数据·hadoop
鼠鼠我捏,要死了捏16 小时前
Hadoop NameNode内存泄漏与GC停顿问题排查与解决方案
hadoop·问题排查·jvm优化
嘉禾望岗50319 小时前
Yarn介绍与HA搭建
大数据·hadoop·yarn
IT研究室19 小时前
大数据毕业设计选题推荐-基于大数据的国家药品采集药品数据可视化分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·信息可视化·spark·毕业设计·数据可视化·bigdata
Lx35220 小时前
Hadoop性能瓶颈分析:从JVM到磁盘IO的全链路优化
大数据·hadoop
DashingGuy21 小时前
数仓建模理论
数据仓库
BYSJMG1 天前
计算机毕业设计选题:基于Spark+Hadoop的健康饮食营养数据分析系统【源码+文档+调试】
大数据·vue.js·hadoop·分布式·spark·django·课程设计
励志成为糕手1 天前
Hadoop进程:深入理解分布式计算引擎的核心机制
大数据·hadoop·分布式·mapreduce·yarn
像豆芽一样优秀1 天前
Hive和Flink数据倾斜问题
大数据·数据仓库·hive·hadoop·flink
计算机毕业设计木哥1 天前
计算机毕业设计 基于Python+Django的医疗数据分析系统
开发语言·hadoop·后端·python·spark·django·课程设计