实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.12 R语言解题

本文是实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.12 R语言解题。主要涉及线性回归、回归的显著性、残差分析。

10-12

vial <- seq(1, 12, 1)

Viscosity <- c(26,24,175,160,163,55,62,100,26,30,70,71)

Temperature <- c(1.0,1.0,1.5,1.5,1.5,0.5,1.5,0.5,1.0,0.5,1.0,0.5)

Catalyst <- c(1.0,1.0,4.0,4.0,4.0,2.0,2.0,3.0,1.5,1.5,2.5,2.5)

visc <- data.frame(vial, Viscosity, Temperature,Catalyst)

visc

lm.fit <- lm(Viscosity ~ (Temperature)^2+(Catalyst)^2, data=visc)

summary (lm.fit)

> summary (lm.fit)

Call:

lm.default(formula = Viscosity ~ (Temperature)^2 + (Catalyst)^2,

data = visc)

Residuals:

Min 1Q Median 3Q Max

-14.0097 -4.9064 0.9614 4.7104 12.6390

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -49.635 7.988 -6.214 0.000156 ***

Temperature 18.355 7.615 2.410 0.039218 *

Catalyst 46.116 2.887 15.975 6.52e-08 ***


Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.483 on 9 degrees of freedom

Multiple R-squared: 0.9771, Adjusted R-squared: 0.972

F-statistic: 191.8 on 2 and 9 DF, p-value: 4.178e-08

summary (aov(lm.fit))

> summary (aov(lm.fit))

Df Sum Sq Mean Sq F value Pr(>F)

Temperature 1 11552 11552 128.5 1.25e-06 ***

Catalyst 1 22950 22950 255.2 6.52e-08 ***

Residuals 9 809 90


Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

op <- par(mfrow=c(2,2), las=1)

plot(lm.fit)

par(op)

library(car)

carPlots(lm.fit)

相关推荐
Moutai码农9 小时前
1.5、机器学习-回归算法
人工智能·机器学习·回归
zhangfeng113312 小时前
BiocManager下载失败 R语言 解决办法
开发语言·r语言
西猫雷婶2 天前
神经网络|(十九)概率论基础知识-伽马函数·下
人工智能·深度学习·神经网络·机器学习·回归·scikit-learn·概率论
XZSSWJS3 天前
机器学习基础-day03-机器学习中的线性回归
人工智能·机器学习·线性回归
XZSSWJS3 天前
机器学习基础-day04-数学方法实现线性回归
人工智能·机器学习·线性回归
Tiger Z3 天前
《R for Data Science (2e)》免费中文翻译 (第7章) --- Data import(1)
r语言·数据科学·中文翻译
CH3_CH2_CHO3 天前
DAY02:【DL 第一弹】pytorch
人工智能·pytorch·python·深度学习·回归
骑驴看星星a3 天前
皮尔逊相关(Pearson)和斯皮尔曼相关(Spearman)显著性检验
算法·数学建模·回归·线性回归
l12345sy3 天前
Day19_【机器学习—线性回归 (2)—损失函数、梯度下降法】
人工智能·机器学习·线性回归·梯度下降法·损失函数
魔力之心3 天前
R notes[2]
开发语言·r语言