GQA(Grouped Query Attention):分组注意力机制的原理与实践《一》

GQA(Grouped Query Attention )是近年来在大语言模型中广泛应用的一种注意力机制优化方法,最初由 Google 在 2023 年提出。它是对 Multi-Query Attention (MQA) 的扩展,旨在平衡模型性能与计算效率。


🌟 GQA 是什么?

简单定义:

GQA 是一种将查询头(Query Heads)分组,并共享键(Key)和值(Value)头的注意力机制变体

它试图在 标准的多头注意力(MHA)多查询注意力(MQA) 之间找到一个折中点:

注意力类型 Query Heads Key/Value Heads 共享情况
MHA 多个 多个 不共享
GQA 多个 少于 Query 的多个 分组共享
MQA 多个 1 完全共享

🧠 原理详解

1. 回顾标准 Multi-Head Attention (MHA)

在标准的 Transformer 中:

  • 每个 token 的 QKV 都是由输入线性变换得到。
  • 如果有 H 个 attention heads,则每个 head 都有自己的 QKV 向量。

公式如下:

Q = X W Q , K = X W K , V = X W V Q = XW_Q, \quad K = XW_K, \quad V = XW_V Q=XWQ,K=XWK,V=XWV

其中 W_Q, W_K, W_V 是可学习参数。

每个 head 的 Q/K/V 是从这些矩阵中切出来的。


2. 引入 GQA:Query 分组 + Key/Value 共享

在 GQA 中:

  • Query heads 被分成若干组(比如 4 组)
  • 每组共享一组 Key 和 Value 向量(即每组对应一个 K 和 V)

例如:

  • 总共 32 个 query heads
  • 分成 4 组,每组 8 个 heads
  • 每组使用相同的 Key 和 Value 向量
  • 所以只需要 4 组 K/V,而不是 32 组

这样做的好处是:

  • 减少了 Key/Value 的数量,降低了内存占用(尤其是 KV Cache)
  • 保留了比 MQA 更多的表达能力

⚙️ GQA 的优势

优势 描述
推理速度更快 更少的 Key/Value 向量意味着更小的 KV Cache,减少解码时的内存访问延迟
内存占用更低 特别是在批量生成或长文本生成时,KV Cache 占用显著降低
比 MQA 表现更好 相比完全共享 Key/Value 的 MQA,GQA 保留了部分多样性,模型表现通常更优
适合部署 对硬件资源友好,特别适合在有限算力设备上运行的大模型

🔍 示例说明(来自 Llama 3)

Llama 3 使用了 GQA 技术来提升推理效率。

  • 总共 32 个 query heads
  • 只使用了 8 个 key/value heads(即每组 4 个 queries 共享一个 key/value)

这意味着:

  • 每个 group 包含 4 个 query heads
  • 这些 query 共享同一个 key 和 value

这样可以保持大部分 MHA 的表达能力,同时节省内存和计算开销。


📈 MHA vs GQA vs MQA 性能对比(大致)

指标 MHA GQA MQA
表达能力 最强 中等 最弱
推理速度 较慢 最快
内存占用(KV Cache) 最高 中等 最低
部署友好度 一般 最高

🧩 应用场景

GQA 特别适用于以下场景:

  • 大模型推理优化(如 Llama 3、PaLM 2、Gemini Nano)
  • 移动端/边缘端部署
  • 需要长上下文处理的任务
  • 大批量生成任务

💡 总结

项目 GQA
类型 注意力机制变体
核心思想 Query 分组 + Key/Value 共享
优点 提升推理速度、降低内存消耗、兼顾模型表现
缺点 表达能力略低于 MHA
应用 大语言模型部署、高效推理系统

相关推荐
三花AI35 分钟前
ComfyUI 子工作流功能:一次编辑全局更新
人工智能
大模型铲屎官36 分钟前
【深度学习-Day 23】框架实战:模型训练与评估核心环节详解 (MNIST实战)
人工智能·pytorch·python·深度学习·大模型·llm·mnist
Elastic 中国社区官方博客38 分钟前
Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
大数据·人工智能·elasticsearch·搜索引擎·云计算·全文检索·aws
Jamence1 小时前
多模态大语言模型arxiv论文略读(106)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
caig0001 小时前
稳定币的深度剖析与展望
人工智能·区块链
反向跟单策略1 小时前
期货反向跟单运营逻辑推导思路
大数据·人工智能·数据分析·区块链
机器之心1 小时前
MoE推理「王炸」组合:昇腾×盘古让推理性能狂飙6-8倍
人工智能
艾醒(AiXing-w)1 小时前
探索大语言模型(LLM):RSE流程详解——从文档中精准识别高相关片段
数据库·人工智能·语言模型
陈奕昆2 小时前
4.2 HarmonyOS NEXT分布式AI应用实践:联邦学习、跨设备协作与个性化推荐实战
人工智能·分布式·harmonyos
崔高杰2 小时前
To be or Not to be, That‘s a Token——论文阅读笔记——Beyond the 80/20 Rule和R2R
论文阅读·笔记