机器学习基础相关问题

机器学习相关的基础问题

K-means是否一定会收敛

K-means算法在有限步数内一定会收敛,但收敛到的可能是局部最优解而非全局最优解。以下是详细分析:

K-means 的优化目标是最小化 样本到其所归属簇中心的距离平方和(SSE,Sum of Squared Errors)。因此,每一次迭代都单调减小(或保持不变)损失函数,而 SSE 有下界(不能为负数),所以一定会收敛。

在实际实现中(如 Scikit-learn),为了避免无限循环或耗时过长,常设定最大迭代次数(如 300)。此时:

如果达到最大迭代次数仍未收敛,算法提前终止,返回当前结果

所以从实现角度看,K-means 不一定"完全"收敛,但这是一种工程权衡

相关推荐
想要成为计算机高手1 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
NeoFii1 小时前
Day 22: 复习
机器学习
静心问道2 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.02 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
爱喝矿泉水的猛男2 小时前
非定长滑动窗口(持续更新)
算法·leetcode·职场和发展
小楓12012 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
YuTaoShao2 小时前
【LeetCode 热题 100】131. 分割回文串——回溯
java·算法·leetcode·深度优先
数据与人工智能律师3 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen3 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域3 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序