layer norm和 rms norm 对比

Layer norm

python 复制代码
# Layer Norm 公式
mean = x.mean(dim=-1, keepdim=True)
var = x.var(dim=-1, keepdim=True)
output = (x - mean) / sqrt(var + eps) * gamma + beta

特点:

  • 减去均值(去中心化)
  • 除以标准差(标准化)
  • 包含可学习参数 gamma 和 beta
  • 计算复杂度相对较高

RMS Norm(Root Mean Square归一化):

python 复制代码
# RMS Norm 公式
rms = sqrt(mean(x²))
output = x / rms * gamma

特点:

  • 不减去均值(保持中心)
  • 只除以RMS值
  • 只有一个可学习参数 gamma
  • 计算更简单高效

对比


代码对比

python 复制代码
import torch
import torch.nn as nn

class LayerNorm(nn.Module):
    def __init__(self, dim, eps=1e-6):
        super().__init__()
        self.gamma = nn.Parameter(torch.ones(dim))
        self.beta = nn.Parameter(torch.zeros(dim))
        self.eps = eps
    
    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        var = x.var(-1, keepdim=True, unbiased=False)
        return (x - mean) / torch.sqrt(var + self.eps) * self.gamma + self.beta

class RMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-6):
        super().__init__()
        self.gamma = nn.Parameter(torch.ones(dim))
        self.eps = eps
    
    def forward(self, x):
        rms = torch.sqrt(torch.mean(x**2, dim=-1, keepdim=True) + self.eps)
        return x / rms * self.gamma
相关推荐
Dingdangcat861 分钟前
【YOLOv8改进实战】使用Ghost模块优化P2结构提升涂胶缺陷检测精度_1
人工智能·yolo·目标跟踪
希艾席帝恩42 分钟前
智慧城市建设中,数字孪生的价值在哪里?
人工智能·低代码·私有化部署·数字孪生·数字化转型
我的offer在哪里1 小时前
开源 AI 生成游戏平台:原理、开源项目与落地实战指南
人工智能·游戏·开源
qidun2101 小时前
埃夫特机器人防护服使用范围详解-避免十大应用误区
网络·人工智能
Σίσυφος19001 小时前
PCL Point-to-Point ICP详解
人工智能·算法
PaperRed ai写作降重助手1 小时前
AI 论文写作工具排名(实测不踩坑)
人工智能·aigc·ai写作·论文写作·智能降重·辅助写作·降重复率
ktoking1 小时前
Stock Agent AI 模型的选股器实现 [五]
人工智能·python
qwy7152292581631 小时前
10-图像的翻转
人工智能·opencv·计算机视觉
霍格沃兹测试学院-小舟畅学1 小时前
Playwright企业级测试架构设计:模块化与可扩展性
人工智能·测试工具
卡奥斯开源社区官方1 小时前
深度拆解:Clawdbot“集体永生”技术内核,是AI协同突破还是营销噱头?
人工智能