Transformer-BiGRU多变量时序预测(Matlab完整源码和数据)

Transformer-BiGRU多变量时序预测(Matlab完整源码和数据)

目录

效果一览


基本介绍

1.Matlab实现Transformer-BiGRU多变量时间序列预测,Transformer编码器结合双向门控循环单元多变量时间序列预测;

2.运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

主要功能

时间序列预测

使用历史时间步的特征数据预测目标值。

模型架构

结合了 Transformer 的自注意力机制(捕捉长距离依赖)和 双向 GRU(捕捉正反向时序特征)。

完整流程

涵盖数据预处理、模型构建、训练、预测、评估及可视化全流程。

程序设计

完整代码获取私信回复:Transformer-BiGRU多变量时序预测(Matlab完整源码和数据)

clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据

num_samples = length(result);  % 样本个数
or_dim = size(result, 2);      % 原始特征+输出数目


%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129215161 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
胡耀超4 小时前
DataOceanAI Dolphin(ffmpeg音频转化教程) 多语言(中国方言)语音识别系统部署与应用指南
python·深度学习·ffmpeg·音视频·语音识别·多模态·asr
HUIMU_4 小时前
DAY12&DAY13-新世纪DL(Deeplearning/深度学习)战士:破(改善神经网络)1
人工智能·深度学习
mit6.8245 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
Coovally AI模型快速验证6 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
科大饭桶6 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
努力还债的学术吗喽7 小时前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写
weixin_507929918 小时前
第G7周:Semi-Supervised GAN 理论与实战
人工智能·pytorch·深度学习
AI波克布林10 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
Blossom.11811 小时前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
2502_9271612813 小时前
DAY 40 训练和测试的规范写法
人工智能·深度学习·机器学习