智能体开发,实现自定义知识库,基于 LangChain,qwen 7b, ollama, chatopera | LLMs

Agent built with LangChain, and Chatopera Cloud

By themselves, language models can't take actions - they just output text. A big use case for LangChain is creating agents. Agents are systems that use LLMs as reasoning engines to determine which actions to take and the inputs necessary to perform the action. After executing actions, the results can be fed back into the LLM to determine whether more actions are needed, or whether it is okay to finish. This is often achieved via tool-calling.

本教程示例程序:https://github.com/hailiang-wang/llm-get-started/tree/master/005_agent_langchain

Config custom knowledge base with Chatopera Cloud Services, https://bot.chatopera.com/

Leverge chat routes with LLMs - e.g. mistral-nemo, myaniu/qwen2.5-1m:7b, myaniu/qwen2.5-1m:14b.

RAG & Agent

Start

First, install ollama, next, run ollama pull mistral-nemo:latest, checkout mistral-nemo.

Next, install pip deps.

复制代码
pip install -r requirements.txt

Then, config env file.

复制代码
cp sample.env .env # Modify key-values in .env

At last, run

复制代码
./start.sh

Other tool calling enabled models

复制代码
myaniu/qwen2.5-1m:7b
myaniu/qwen2.5-1m:14b
相关推荐
AI大模型4 小时前
从零开始,亲手开发你的第一个AI大模型(一)基础知识
程序员·langchain·agent
掘我的金1 天前
15_LangChain自定义Callback组件
langchain
东方不败之鸭梨的测试笔记2 天前
智能测试用例生成工具设计
人工智能·ai·langchain
堆栈future2 天前
LangGraph实践-构建AI工作流:创建一本大模型应用开发书籍
langchain·llm·aigc
大志说编程2 天前
LangChain框架入门15:深度解析Retrievers检索器组件
python·langchain·llm
堆栈future3 天前
Google Agent白皮书:深度解析生成式AI Agent
langchain·llm·aigc
ai绘画-安安妮3 天前
零基础学LangChain:核心概念与基础组件解析
人工智能·学习·ai·程序员·langchain·大模型·转行
掘我的金3 天前
13_LangChain向量管理高阶指南
langchain
欧阳码农4 天前
langgraph开发Deep Research智能体-项目搭建
前端·后端·langchain
大志说编程4 天前
LangChain框架入门14:深入解析向量存储组件VectorStore
python·langchain·ai编程