智能体开发,实现自定义知识库,基于 LangChain,qwen 7b, ollama, chatopera | LLMs

Agent built with LangChain, and Chatopera Cloud

By themselves, language models can't take actions - they just output text. A big use case for LangChain is creating agents. Agents are systems that use LLMs as reasoning engines to determine which actions to take and the inputs necessary to perform the action. After executing actions, the results can be fed back into the LLM to determine whether more actions are needed, or whether it is okay to finish. This is often achieved via tool-calling.

本教程示例程序:https://github.com/hailiang-wang/llm-get-started/tree/master/005_agent_langchain

Config custom knowledge base with Chatopera Cloud Services, https://bot.chatopera.com/

Leverge chat routes with LLMs - e.g. mistral-nemo, myaniu/qwen2.5-1m:7b, myaniu/qwen2.5-1m:14b.

RAG & Agent

Start

First, install ollama, next, run ollama pull mistral-nemo:latest, checkout mistral-nemo.

Next, install pip deps.

复制代码
pip install -r requirements.txt

Then, config env file.

复制代码
cp sample.env .env # Modify key-values in .env

At last, run

复制代码
./start.sh

Other tool calling enabled models

复制代码
myaniu/qwen2.5-1m:7b
myaniu/qwen2.5-1m:14b
相关推荐
ai大师5 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
爱喝喜茶爱吃烤冷面的小黑黑9 小时前
小黑一层层削苹果皮式大模型应用探索:langchain中智能体思考和执行工具的demo
python·langchain·代理模式
大千AI15 小时前
LangChain Core架构解析:模块化设计与LCEL原语实现原理
langchain
硅谷神农16 小时前
第一章:AI与LangChain初探 —— 你的第一个“智能”程序
langchain
硅谷神农16 小时前
第二章:模型 (Models) —— AI应用的大脑
langchain
你那个道上的1 天前
LangChain4j学习与实践
langchain·ai编程
缘友一世1 天前
LangChain【8】之工具包深度解析:从基础使用到高级实践
langchain
bytebeats2 天前
强大的代理通信其实是 A2A + MCP + LangChain
langchain·mcp
架构师那点事儿2 天前
一文带你俯瞰大模型领域的世界
langchain·aigc·ai编程