智能体开发,实现自定义知识库,基于 LangChain,qwen 7b, ollama, chatopera | LLMs

Agent built with LangChain, and Chatopera Cloud

By themselves, language models can't take actions - they just output text. A big use case for LangChain is creating agents. Agents are systems that use LLMs as reasoning engines to determine which actions to take and the inputs necessary to perform the action. After executing actions, the results can be fed back into the LLM to determine whether more actions are needed, or whether it is okay to finish. This is often achieved via tool-calling.

本教程示例程序:https://github.com/hailiang-wang/llm-get-started/tree/master/005_agent_langchain

Config custom knowledge base with Chatopera Cloud Services, https://bot.chatopera.com/

Leverge chat routes with LLMs - e.g. mistral-nemo, myaniu/qwen2.5-1m:7b, myaniu/qwen2.5-1m:14b.

RAG & Agent

Start

First, install ollama, next, run ollama pull mistral-nemo:latest, checkout mistral-nemo.

Next, install pip deps.

复制代码
pip install -r requirements.txt

Then, config env file.

复制代码
cp sample.env .env # Modify key-values in .env

At last, run

复制代码
./start.sh

Other tool calling enabled models

复制代码
myaniu/qwen2.5-1m:7b
myaniu/qwen2.5-1m:14b
相关推荐
乔巴先生244 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
AI Echoes12 小时前
LLMOps平台:开源项目LMForge = GPTs + Coze
人工智能·python·langchain·开源·agent
YUELEI11815 小时前
langchain 输出解析器 Output Parser
langchain
玲小珑20 小时前
LangChain.js 完全开发手册(七)RAG(检索增强生成)架构设计与实现
前端·langchain·ai编程
虫无涯21 小时前
LangChain中的Prompt模板如何使用?
服务器·langchain·prompt
ChinaRainbowSea1 天前
7. LangChain4j + 记忆缓存详细说明
java·数据库·redis·后端·缓存·langchain·ai编程
精灵vector2 天前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain
RainbowSea2 天前
8. LangChain4j + 提示词工程详细说明
langchain·llm·ai编程
RainbowSea2 天前
7. LangChain4j + 记忆缓存详细说明
langchain·llm·ai编程
无难事者若执2 天前
20250907-02:LangChain 架构和LangChain 生态系统包是什么
langchain·理论