本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院
本文深入讲解PyTorch高级开发技巧,涵盖自定义层/损失函数实现、模型保存加载策略以及TensorBoard可视化监控,提供工业级最佳实践和完整代码示例。
一、自定义神经网络层
1.1 基础自定义层实现
python
import torch
import torch.nn as nn
import torch.nn.functional as F
class CustomLinear(nn.Module):
"""带权重归一化的全连接层"""
def __init__(self, in_features, out_features):
super().__init__()
# 初始化参数
self.weight = nn.Parameter(torch.randn(out_features, in_features))
self.bias = nn.Parameter(torch.zeros(out_features))
# 权重归一化因子
self.scale = nn.Parameter(torch.ones(1))
def forward(self, x):
# 权重归一化
norm_weight = self.scale * F.normalize(self.weight, p=2, dim=1)
# 矩阵乘法
return F.linear(x, norm_weight, self.bias)
# 测试自定义层
custom_layer = CustomLinear(10, 5)
input_data = torch.randn(3, 10) # 批量大小3, 特征10
output = custom_layer(input_data)
print("自定义层输出形状:", output.shape)
1.2 带参数的自定义层
python
class LearnableDropout(nn.Module):
"""可学习的Dropout层"""
def __init__(self, init_drop_rate=0.5):
super().__init__()
# 使用sigmoid确保drop_rate在0-1之间
self.drop_rate = nn.Parameter(torch.tensor(init_drop_rate))
def forward(self, x):
if not self.training:
return x
# 生成与x形状相同的随机掩码
mask = torch.rand_like(x) > torch.sigmoid(self.drop_rate)
return x * mask.float()
# 测试可学习Dropout
drop_layer = LearnableDropout(0.3)
input_data = torch.randn(5, 10)
print("训练模式输出:", drop_layer(input_data)[0])
drop_layer.eval()
print("评估模式输出:", drop_layer(input_data)[0])
1.3 复合自定义层
python
class ConvBlock(nn.Module):
"""卷积+BN+激活的标准块"""
def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1):
super().__init__()
self.conv = nn.Conv2d(in_ch, out_ch, kernel_size, stride, padding, bias=False)
self.bn = nn.BatchNorm2d(out_ch)
self.act = nn.ReLU(inplace=True)
def forward(self, x):
return self.act(self.bn(self.conv(x)))
# 构建测试网络
class CustomNet(nn.Module):
def __init__(self):
super().__init__()
self.block1 = ConvBlock(3, 32)
self.pool = nn.MaxPool2d(2)
self.block2 = ConvBlock(32, 64)
self.fc = nn.Linear(64*8*8, 10) # 假设输入32x32图像
def forward(self, x):
x = self.pool(self.block1(x)) # 32x32 -> 16x16
x = self.pool(self.block2(x)) # 16x16 -> 8x8
x = torch.flatten(x, 1)
return self.fc(x)
# 测试网络
model = CustomNet()
test_input = torch.randn(4, 3, 32, 32) # 批量4, 3通道, 32x32
print("模型输出形状:", model(test_input).shape)
二、自定义损失函数
2.1 基础损失函数实现
python
class FocalLoss(nn.Module):
"""Focal Loss用于类别不平衡问题"""
def __init__(self, alpha=1, gamma=2, reduction='mean'):
super().__init__()
self.alpha = alpha
self.gamma = gamma
self.reduction = reduction
def forward(self, inputs, targets):
# 计算交叉熵
ce_loss = F.cross_entropy(inputs, targets, reduction='none')
# 计算概率
p = torch.exp(-ce_loss)
# 计算focal loss
focal_loss = self.alpha * (1 - p) ** self.gamma * ce_loss
# 归约方式
if self.reduction == 'mean':
return focal_loss.mean()
elif self.reduction == 'sum':
return focal_loss.sum()
else:
return focal_loss
# 测试Focal Loss
criterion = FocalLoss(gamma=2)
logits = torch.randn(8, 5) # 8个样本, 5分类
targets = torch.randint(0, 5, (8,))
loss = criterion(logits, targets)
print("Focal Loss:", loss.item())
2.2 多任务损失函数
python
class MultiTaskLoss(nn.Module):
"""多任务学习损失组合"""
def __init__(self, task_losses, weights=None):
"""
task_losses: 各任务损失函数列表
weights: 各损失权重
"""
super().__init__()
self.task_losses = nn.ModuleList(task_losses)
self.weights = weights or [1.0] * len(task_losses)
def forward(self, outputs, targets):
"""
outputs: 各任务输出列表
targets: 各任务目标列表
"""
total_loss = 0
loss_details = {}
for i, (output, target, loss_fn, weight) in enumerate(
zip(outputs, targets, self.task_losses, self.weights)):
loss_val = loss_fn(output, target)
total_loss += weight * loss_val
loss_details[f'task_{i}_loss'] = loss_val.item()
loss_details['total_loss'] = total_loss.item()
return total_loss, loss_details
# 测试多任务损失
# 假设有两个任务: 分类和回归
task1_criterion = nn.CrossEntropyLoss() # 分类任务
task2_criterion = nn.MSELoss() # 回归任务
multi_loss = MultiTaskLoss([task1_criterion, task2_criterion], weights=[1.0, 0.5])
# 模拟输出和目标
task1_out = torch.randn(4, 5) # 分类输出 (4样本, 5类)
task1_target = torch.randint(0, 5, (4,))
task2_out = torch.randn(4, 1) # 回归输出
task2_target = torch.randn(4, 1)
total_loss, loss_details = multi_loss(
outputs=[task1_out, task2_out],
targets=[task1_target, task2_target]
)
print("总损失:", total_loss.item())
print("损失详情:", loss_details)

三、模型保存与加载
3.1 基础保存与加载
ini
# 保存整个模型
torch.save(model, 'full_model.pth')
# 加载整个模型
loaded_model = torch.load('full_model.pth')
# 仅保存模型参数
torch.save(model.state_dict(), 'model_params.pth')
# 从参数加载模型
new_model = CustomNet()
new_model.load_state_dict(torch.load('model_params.pth'))
3.2 训练检查点系统
python
import os
import shutil
def save_checkpoint(state, is_best, filename='checkpoint.pth', best_name='model_best.pth'):
"""保存训练检查点"""
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, best_name)
def load_checkpoint(model, optimizer, checkpoint_path):
"""加载检查点恢复训练"""
if os.path.isfile(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
best_acc = checkpoint['best_acc']
print(f"加载检查点 '{checkpoint_path}' (epoch {checkpoint['epoch']})")
return model, optimizer, start_epoch, best_acc
else:
print(f"未找到检查点 '{checkpoint_path}'")
return model, optimizer, 0, 0
# 训练中使用检查点
model = CustomNet()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
best_acc = 0
for epoch in range(100):
# 训练过程...
train_loss = 0.0
current_acc = 0.85 # 模拟准确率
# 保存检查点
is_best = current_acc > best_acc
best_acc = max(current_acc, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}, is_best)
# 恢复训练示例
resume_model = CustomNet()
resume_optimizer = torch.optim.Adam(resume_model.parameters(), lr=0.001)
resume_model, resume_optimizer, start_epoch, best_acc = load_checkpoint(
resume_model, resume_optimizer, 'model_best.pth'
)
print(f"从epoch {start_epoch}恢复训练,最佳准确率: {best_acc:.4f}")
3.3 ONNX模型导出
ini
import torch.onnx
# 创建示例输入
dummy_input = torch.randn(1, 3, 32, 32)
# 导出ONNX模型
torch.onnx.export(
model, # 要导出的模型
dummy_input, # 模型输入
"custom_model.onnx", # 保存路径
export_params=True, # 导出训练参数
opset_version=11, # ONNX算子集版本
input_names=['input'], # 输入名称
output_names=['output'], # 输出名称
dynamic_axes={ # 动态维度支持
'input': {0: 'batch_size'},
'output': {0: 'batch_size'}
}
)
print("ONNX模型导出成功")
四、TensorBoard可视化
4.1 基础配置与训练监控
ini
from torch.utils.tensorboard import SummaryWriter
import numpy as np
# 创建SummaryWriter
writer = SummaryWriter('runs/experiment1')
# 模拟训练过程
for epoch in range(100):
# 模拟训练数据
train_loss = 0.8 * np.exp(-0.05 * epoch) + 0.1 * np.random.rand()
train_acc = 1.0 - 0.8 * np.exp(-0.03 * epoch) + 0.05 * np.random.rand()
val_loss = 0.7 * np.exp(-0.04 * epoch) + 0.15 * np.random.rand()
val_acc = 1.0 - 0.7 * np.exp(-0.025 * epoch) + 0.04 * np.random.rand()
# 记录标量
writer.add_scalar('Loss/train', train_loss, epoch)
writer.add_scalar('Accuracy/train', train_acc, epoch)
writer.add_scalar('Loss/val', val_loss, epoch)
writer.add_scalar('Accuracy/val', val_acc, epoch)
# 记录直方图
if epoch % 10 == 0:
weights = model.fc.weight.data.flatten().numpy()
writer.add_histogram('FC Weights', weights, epoch)
# 记录图像
if epoch % 20 == 0:
# 生成示例图像
output = model(dummy_input)
writer.add_image('Model Output', output[0].detach(), epoch, dataformats='HW')
# 记录PR曲线
if epoch == 50:
all_preds = []
all_labels = []
# 模拟预测数据
for _ in range(100):
pred = torch.randn(10)
label = torch.randint(0, 10, (1,))
all_preds.append(pred)
all_labels.append(label)
all_preds = torch.stack(all_preds)
all_labels = torch.cat(all_labels)
writer.add_pr_curve('PR Curve', all_labels, all_preds.softmax(dim=1)[:, 1], epoch)
# 关闭writer
writer.close()
4.2 模型结构可视化
ini
# 添加模型图
dummy_input = torch.randn(1, 3, 32, 32)
writer.add_graph(model, dummy_input)
# 添加嵌入可视化
# 模拟特征向量和标签
features = torch.randn(100, 256)
labels = torch.randint(0, 10, (100,))
writer.add_embedding(
features,
metadata=labels,
label_img=torch.randn(100, 3, 32, 32)
)
print("在终端运行: tensorboard --logdir=runs/")
print("然后在浏览器中访问 http://localhost:6006/")
4.3 TensorBoard效果展示

TensorBoard核心功能:
标量可视化:损失/准确率曲线
模型结构:计算图可视化
直方图:权重/梯度分布
PR曲线:分类性能评估
嵌入投影:高维特征可视化
图像记录:输入/输出可视化
五、综合实战:自定义模型训练全流程
5.1 完整训练系统实现
ini
import time
from torch.utils.data import DataLoader, TensorDataset
# 创建模拟数据集
X_train = torch.randn(1000, 10)
y_train = torch.randint(0, 3, (1000,))
train_dataset = TensorDataset(X_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# 自定义模型
class AdvancedModel(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = CustomLinear(10, 64)
self.drop = LearnableDropout(0.3)
self.layer2 = nn.Linear(64, 3)
def forward(self, x):
x = F.relu(self.layer1(x))
x = self.drop(x)
return self.layer2(x)
# 初始化组件
model = AdvancedModel()
criterion = FocalLoss(gamma=2)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
writer = SummaryWriter('runs/full_experiment')
# 训练函数
def train_model(epochs):
best_acc = 0
start_epoch = 0
# 尝试加载检查点
checkpoint_path = 'checkpoint.pth'
if os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
best_acc = checkpoint['best_acc']
print(f"从epoch {start_epoch}恢复训练,最佳准确率: {best_acc:.4f}")
for epoch in range(start_epoch, epochs):
model.train()
total_loss = 0
correct = 0
total = 0
start_time = time.time()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
total_loss += loss.item()
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
# 记录每批数据
if batch_idx % 10 == 0:
writer.add_scalar('Batch Loss/train', loss.item(), epoch * len(train_loader) + batch_idx)
# 计算指标
epoch_loss = total_loss / len(train_loader)
epoch_acc = 100. * correct / total
epoch_time = time.time() - start_time
# 记录指标
writer.add_scalar('Loss/train', epoch_loss, epoch)
writer.add_scalar('Accuracy/train', epoch_acc, epoch)
# 保存检查点
is_best = epoch_acc > best_acc
best_acc = max(epoch_acc, best_acc)
save_checkpoint({
'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_acc': best_acc,
'loss': epoch_loss,
}, is_best)
# 打印日志
print(f"Epoch [{epoch+1}/{epochs}] "
f"Loss: {epoch_loss:.4f} Acc: {epoch_acc:.2f}% "
f"Time: {epoch_time:.2f}s")
writer.close()
print(f"训练完成,最佳准确率: {best_acc:.2f}%")
# 导出ONNX模型
dummy_input = torch.randn(1, 10)
torch.onnx.export(
model, dummy_input, "final_model.onnx",
input_names=['input'], output_names=['output']
)
# 启动训练
train_model(50)
5.2 模型部署推理
ini
# 加载训练好的模型
deploy_model = AdvancedModel()
deploy_model.load_state_dict(torch.load('model_best.pth')['model'])
deploy_model.eval() # 切换到评估模式
# 推理函数
def inference(input_data):
with torch.no_grad():
output = deploy_model(input_data)
probabilities = F.softmax(output, dim=1)
_, predicted_class = output.max(1)
return predicted_class.item(), probabilities.squeeze().tolist()
# 测试推理
test_input = torch.randn(1, 10)
class_idx, probs = inference(test_input)
print(f"预测类别: {class_idx}, 各类别概率: {probs}")
# 使用ONNX模型推理
import onnxruntime as ort
ort_session = ort.InferenceSession("final_model.onnx")
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
# ONNX推理
onnx_input = test_input.numpy()
onnx_output = ort_session.run([output_name], {input_name: onnx_input})[0]
onnx_class = onnx_output.argmax()
print(f"ONNX模型预测类别: {onnx_class}")
六、PyTorch进阶最佳实践
自定义组件设计原则:
css
graph TD
A[需求分析] --> B[继承nn.Module]
B --> C[定义__init__参数]
C --> D[注册可学习参数]
D --> E[实现forward逻辑]
E --> F[单元测试验证]
模型保存策略选择:

TensorBoard监控要点:
关键指标:损失/准确率/学习率
-
权重分布:各层权重/梯度直方图
-
模型结构:计算图可视化
-
数据样本:输入/输出可视化
-
超参数:记录实验配置
生产部署建议:
-
使用
torch.jit.script
优化模型 -
启用半精度推理加速(FP16)
-
实现批处理优化
-
添加API服务层(Flask/FastAPI)
-
实施模型监控和日志系统
关键要点总结
自定义层开发模式:
ruby
class CustomLayer(nn.Module):
def __init__(self, params):
super().__init__()
# 1. 定义可学习参数 (nn.Parameter)
# 2. 注册子模块 (nn.Module)
def forward(self, x):
# 实现前向传播逻辑
return transformed_x
损失函数设计原则:
继承nn.Module
实现
- 前向传播中计算损失
- 支持多种归约方式
- 确保数值稳定性
模型保存检查点结构:
css
checkpoint = {
'epoch': current_epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_acc': best_accuracy,
'loss': current_loss,
# 可添加其他元数据
}
TensorBoard核心API:
perl
writer.add_scalar('Tag', value, step) # 标量
writer.add_histogram('Tag', values, step) # 直方图
writer.add_image('Tag', image, step) # 图像
writer.add_graph(model, input_data) # 模型图
writer.add_embedding(features, metadata) # 嵌入可视化
部署优化技巧:
使用model.eval()
固定模型
-
启用
torch.no_grad()
减少内存 -
应用半精度推理
model.half()
-
使用ONNX/TensorRT加速
掌握这些PyTorch进阶技能后,你将能够高效开发复杂模型、优化训练过程并实现生产级部署,为实际AI应用开发打下坚实基础!更多AI大模型应用开发学习视频内容和资料,尽在聚客AI学院。