import torch
import time
def stress_test_gpu(matrix_size=16384, duration=300):
"""
对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率
参数:
matrix_size: 矩阵维度大小,增大可提高计算复杂度
duration: 测试持续时间(秒)
"""
# 检查CUDA是否可用
if not torch.cuda.is_available():
print("CUDA不可用,无法进行GPU压力测试!")
return
# 获取GPU设备
device = torch.device("cuda:0")
print(f"使用GPU: {torch.cuda.get_device_name(device)}")
# 创建大型矩阵并移到GPU
print(f"正在创建 {matrix_size}x{matrix_size} 的矩阵...")
a = torch.randn(matrix_size, matrix_size, device=device)
b = torch.randn(matrix_size, matrix_size, device=device)
# 预热GPU
print("预热GPU中...")
for _ in range(3):
c = torch.matmul(a, b)
torch.cuda.synchronize()
# 开始压力测试
print(f"开始GPU压力测试,持续 {duration} 秒...")
start_time = time.time()
iterations = 0
try:
while time.time() - start_time < duration:
# 执行矩阵乘法(计算密集型操作)
c = torch.matmul(a, b)
# 同步设备以确保计算完成
torch.cuda.synchronize()
iterations += 1
# 每10秒打印一次进度
if iterations % 10 == 0:
elapsed = time.time() - start_time
print(f"已运行 {elapsed:.1f}s / {duration}s,迭代次数: {iterations}")
except KeyboardInterrupt:
print("测试被用户中断")
finally:
# 清理资源
del a, b, c
torch.cuda.empty_cache()
# 计算性能指标
elapsed = time.time() - start_time
print(f"\n压力测试完成!")
print(f"总运行时间: {elapsed:.2f} 秒")
print(f"总迭代次数: {iterations}")
print(f"平均每秒迭代: {iterations / elapsed:.2f}")
if __name__ == "__main__":
# 可调整矩阵大小以平衡性能和显存使用
# 16384x16384 矩阵约占用2GB显存 (4070有12GB显存)
stress_test_gpu(matrix_size=16384, duration=300)
拉力测试cuda pytorch 把 4070显卡拉满
MYH5162025-06-10 17:08
相关推荐
人工智能训练4 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略yaoming1684 小时前
python性能优化方案研究源于花海5 小时前
迁移学习相关的期刊和会议码云数智-大飞5 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 ExcelDisonTangor6 小时前
DeepSeek-OCR 2: 视觉因果流薛定谔的猫19826 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析发哥来了7 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》biuyyyxxx7 小时前
Python自动化办公学习笔记(一) 工具安装&教程数智联AI团队7 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局极客数模7 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F