光伏功率预测 | BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据)

光伏功率预测 | BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据)

目录

    • [光伏功率预测 | BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据)](#光伏功率预测 | BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据))

效果一览

基本介绍

光伏功率预测,BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据)

程序设计

完整代码获取链接:光伏功率预测,BP神经网络多变量单步光伏功率预测(Matlab完整源码和数据))

clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('北半球光伏数据.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数
or_dim = size(result, 2);      % 原始特征+输出数目
kim =  4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];
end

%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129215161 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
码蛊仙尊11 分钟前
2025计算机视觉新技术
人工智能·计算机视觉
西猫雷婶13 分钟前
scikit-learn/sklearn学习|广义线性回归损失函数的基本表达式
深度学习·神经网络·学习·机器学习·线性回归·scikit-learn·概率论
星空的资源小屋21 分钟前
网易UU远程,免费电脑远程控制软件
人工智能·python·pdf·电脑
IMER SIMPLE27 分钟前
人工智能-python-深度学习-神经网络-MobileNet V1&V2
人工智能·python·深度学习
njxiejing29 分钟前
Pandas数据结构(DataFrame,字典赋值)
数据结构·人工智能·pandas
盼小辉丶31 分钟前
TensorFlow深度学习实战(37)——深度学习的数学原理
人工智能·深度学习·tensorflow
GEO_YScsn39 分钟前
计算机视觉 (CV) 基础:图像处理、特征提取与识别
图像处理·人工智能·计算机视觉
金井PRATHAMA42 分钟前
超越模仿,探寻智能的本源:从人类认知机制到下一代自然语言处理
人工智能·自然语言处理·知识图谱
l1t1 小时前
我改写的二分法XML转CSV文件程序速度追上了张泽鹏先生的
xml·c语言·人工智能·算法·expat
roshy1 小时前
MCP(模型上下文协议)入门教程1
人工智能·大模型·agent