第四十天打卡

@浙大疏锦行

训练和测试的规范写法

知识点回顾:

1.彩色和灰度图片测试和训练的规范写法:封装在函数中

2.展平操作:除第一个维度batchsize外全部展平

3.dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms, datasets
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
torch.manual_seed(42)
device = torch.device("cuda"if torch.cuda.is_available() else"cpu")
print(device)
 
python 复制代码
#1预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081,))
]
)
#2加载数据集
train_dataset = datasets.MNIST(
    root="./data",
    train=True,
    download=True,
    transform=transform
)
test_dataset = datasets.MNIST(
    root="./data",
    train=False,
    download=True,
    transform=transform
)
#3创建数据加载器
batch_size = 64
train_loader = torch.utils.data.DataLoader(
    dataset=train_dataset,
    batch_size=batch_size,
    shuffle=True
)
test_loader = torch.utils.data.DataLoader(
    dataset=test_dataset,
    batch_size=batch_size,
    shuffle=False
)
#4定义模型
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(28*28, 128)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(128, 10)
    
    def forward(self, x):
        x = self.flatten(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x
model = MLP()
model = model.to(device)
 
#定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
python 复制代码
#5训练模型(记录每个iteration的loss)
def train(model, train_loader, test_loader, criterion, optimizer, epochs, device):
    model.train() #设置为训练模式
 
    #记录损失
    all_iter_losses = []   #记录所有batch的loss
    iter_indices = [] #记录每个iteration的索引
 
    for epoch in range(epochs):
        running_loss = 0.0 #记录每个epoch的loss
        correct = 0 #记录每个epoch的correct
        total =0 #记录每个epoch的total
 
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
 
            optimizer.zero_grad()#梯度清零
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
 
            #记录当前iteration的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
 
            #统计准确率和损失
            running_loss += loss.item()
            #`_`来表示我们不关心第一个返回值(即最大值),只关心第二个返回值(即最大值的索引),这个索引就是模型预测的类别。
            _, predicted = torch.max(output.data, 1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
 
            #每100个batch打印一次训练状态
            if (batch_idx + 1) % 100 == 0:
                print(f"Epoch:{epoch + 1}/{epochs}|Batch:{batch_idx + 1}/{len(train_loader)}",
                      f"|单batch损失:{iter_loss:.4f}|累计平均损失:{running_loss/(batch_idx + 1):.4f}|")
        
        #测试,打印结果
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        epoch_test_loss, epoch_test_acc = test(model, test_loader, criterion,device)
        print(f"Epoch{epoch + 1}/{epochs}完成|训练准确率:{epoch_train_acc:.2f}|测试准确率:{epoch_test_acc:.2f}")
 
    #绘制所有iteration损失函数
    plot_iter_losses(all_iter_losses, iter_indices)
 
    return epoch_test_acc
 
python 复制代码
#6测试模型
def test(model, test_loader, criterion, device):
    model.eval() # 设置为评估模式
    test_loss = 0
    correct = 0
    total = 0
    with torch.no_grad():#测试时关闭梯度计算
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += criterion(output, target).item()
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
    avg_loss = test_loss / len(test_loader)
    accuracy = 100. * correct / total
    return avg_loss, accuracy
python 复制代码
#7绘制损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 5))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch)序号')
    plt.ylabel('Loss')
    plt.title('Iteration Loss Curve')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
python 复制代码
#8执行训练和测试(epochs=2 验证结果)
epochs = 2
print("开始训练")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, epochs, device)
print(f"训练结束,最终准确率为{final_accuracy:.4f}")    
相关推荐
阿什么名字不会重复呢4 分钟前
在线工具+网页平台来学习和操作Python与Excel相关技能
python·数据分析
Vertira36 分钟前
python 阿里云 安装 dashscope的简介、安装
开发语言·python
gc_22991 小时前
学习Python中Selenium模块的基本用法(1:简介)
python·selenium
先做个垃圾出来………2 小时前
2116. 判断一个括号字符串是否有效
python
兮℡檬,3 小时前
房价预测|Pytorch
人工智能·pytorch·python
青春不败 177-3266-05204 小时前
MATLAB近红外光谱分析技术及实践技术应用
随机森林·机器学习·支持向量机·matlab·卷积神经网络·遗传算法·近红外光谱
im_AMBER6 小时前
学习日志19 python
python·学习
mortimer9 小时前
安装NVIDIA Parakeet时,我遇到的两个Pip“小插曲”
python·github
NeoFii9 小时前
Day 22: 复习
机器学习
@昵称不存在9 小时前
Flask input 和datalist结合
后端·python·flask