mac:大模型系列测试

0 MAC

前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。

1 mac 与 unsloth

按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。

注意:一定要切换分支!python版本不要太高!

mac安装unsloth_mac unsloth-CSDN博客

下载模型:我下载速度好慢!

python 复制代码
from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/Llama-3.2-3B-Instruct')

训练一下看看如何:跑通没有障碍,后面的文章我会继续介绍unsloth~

推理测试

文件名称换成自己的即可!

python 复制代码
from mlx_lm import load, stream_generate

repo = "/Users/****/.cache/modelscope/hub/models/LLM-Research/Llama-3.2-3B-Instruct"
model, tokenizer = load(repo)

prompt = "你会做什么,请用100字回答"

messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
    messages, add_generation_prompt=True
)

for response in stream_generate(model, tokenizer, prompt, max_tokens=512):
    print(response.text, end="", flush=True)
print()

结果:我可以提供信息、答案和建议。我们可以在许多领域交流,如教育、科技、娱乐、生活tips等。您有什么问题或想讨论的主题?我会尽力帮助您。

2 总结

可以看到,经过mac可以满足微调以及推理测试,后面我会继续使用unsloth测试mac的能力。内容包含:获取文本数据、拉取大模型、使用不同的策略进行微调、对齐等过程!

相关推荐
拉一次撑死狗1 分钟前
TensorFlow(1)
人工智能·python·tensorflow
m0_650108248 分钟前
【论文精读】Group Collaborative Learning for Co-Salient Object Detection
人工智能·计算机视觉·论文精读·gam·共显著性目标检测·组协同学习·gcm
董厂长37 分钟前
SubAgent的“指令漂移 (Instruction Drift)“困境
人工智能·agent·mcp·subagent
金井PRATHAMA41 分钟前
框架系统在自然语言处理深度语义分析中的作用、挑战与未来展望
人工智能·自然语言处理·知识图谱
小李独爱秋42 分钟前
【机器学习宝藏】深入解析经典人脸识别数据集:Olivetti Faces
人工智能·python·机器学习·计算机视觉·人脸识别·olivetti
2401_841495641 小时前
【自然语言处理】文本表示知识点梳理与习题总结
人工智能·自然语言处理·词向量·文本表示·独热编码·词-词共现矩阵·静态词嵌入
Carl_奕然1 小时前
【大模型】Agent之:从Prompt到Context的演进之路
人工智能·python·语言模型·prompt·多模态
被巨款砸中1 小时前
一篇文章讲清Prompt、Agent、MCP、Function Calling
前端·vue.js·人工智能·web
eqwaak02 小时前
实战项目与工程化:端到端机器学习流程全解析
开发语言·人工智能·python·机器学习·语言模型
说私域2 小时前
开源AI大模型、AI智能名片与S2B2C商城小程序:用户需求满足的底层逻辑与实践路径
人工智能·小程序·开源