论文略读:REEF: Representation Encoding Fingerprints for Large Language Models

ICLR 2025 ORAL

  • 保护开源大语言模型(LLMs)的知识产权 至关重要,因为训练 LLM 需要大量的计算资源和数据投入。

    • 模型拥有者与第三方都有必要识别某个可疑模型是否是在原模型基础上的衍生版本。
  • ------>论文提出了一种无需训练的识别方法 REEF ,从 LLM 特征表示的角度出发,用于判断可疑模型与被侵权模型之间的关系。

    • REEF 通过在相同样本上计算和比较可疑模型与目标模型的中心化核对齐相似度(Centered Kernel Alignment, CKA),来衡量两者的相似性。
  • 该方法具有以下优点:

    • 无需重新训练模型

    • 不会削弱模型的通用能力

    • 顺序微调、剪枝、模型融合与参数置换等操作具有良好鲁棒性。

相关推荐
Moshow郑锴16 分钟前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20251 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR2 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散132 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8242 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945192 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火4 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴4 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR5 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢5 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网