肝爆,以下为AES-256-CFB的基于硬件加速XMM指令集实现:
cpp
#include <wmmintrin.h>
#include <emmintrin.h>
#include <string.h>
#include <iostream>
#include <iomanip>
#include <ctime>
// AES-256密钥扩展
void aes256_key_expansion(const uint8_t *key, __m128i *round_key) {
// 加载初始密钥
__m128i key1 = _mm_loadu_si128((const __m128i*)key);
__m128i key2 = _mm_loadu_si128((const __m128i*)(key + 16));
round_key[0] = key1;
round_key[1] = key2;
// 手动实现所有轮次
__m128i temp = _mm_aeskeygenassist_si128(key2, 0x01);
temp = _mm_shuffle_epi32(temp, 0xFF);
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 4));
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 8));
key1 = _mm_xor_si128(key1, temp);
round_key[2] = key1;
temp = _mm_aeskeygenassist_si128(key1, 0x00);
temp = _mm_shuffle_epi32(temp, 0xAA);
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 4));
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 8));
key2 = _mm_xor_si128(key2, temp);
round_key[3] = key2;
temp = _mm_aeskeygenassist_si128(key2, 0x02);
temp = _mm_shuffle_epi32(temp, 0xFF);
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 4));
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 8));
key1 = _mm_xor_si128(key1, temp);
round_key[4] = key1;
temp = _mm_aeskeygenassist_si128(key1, 0x00);
temp = _mm_shuffle_epi32(temp, 0xAA);
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 4));
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 8));
key2 = _mm_xor_si128(key2, temp);
round_key[5] = key2;
temp = _mm_aeskeygenassist_si128(key2, 0x04);
temp = _mm_shuffle_epi32(temp, 0xFF);
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 4));
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 8));
key1 = _mm_xor_si128(key1, temp);
round_key[6] = key1;
temp = _mm_aeskeygenassist_si128(key1, 0x00);
temp = _mm_shuffle_epi32(temp, 0xAA);
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 4));
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 8));
key2 = _mm_xor_si128(key2, temp);
round_key[7] = key2;
temp = _mm_aeskeygenassist_si128(key2, 0x08);
temp = _mm_shuffle_epi32(temp, 0xFF);
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 4));
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 8));
key1 = _mm_xor_si128(key1, temp);
round_key[8] = key1;
temp = _mm_aeskeygenassist_si128(key1, 0x00);
temp = _mm_shuffle_epi32(temp, 0xAA);
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 4));
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 8));
key2 = _mm_xor_si128(key2, temp);
round_key[9] = key2;
temp = _mm_aeskeygenassist_si128(key2, 0x10);
temp = _mm_shuffle_epi32(temp, 0xFF);
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 4));
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 8));
key1 = _mm_xor_si128(key1, temp);
round_key[10] = key1;
temp = _mm_aeskeygenassist_si128(key1, 0x00);
temp = _mm_shuffle_epi32(temp, 0xAA);
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 4));
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 8));
key2 = _mm_xor_si128(key2, temp);
round_key[11] = key2;
temp = _mm_aeskeygenassist_si128(key2, 0x20);
temp = _mm_shuffle_epi32(temp, 0xFF);
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 4));
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 8));
key1 = _mm_xor_si128(key1, temp);
round_key[12] = key1;
temp = _mm_aeskeygenassist_si128(key1, 0x00);
temp = _mm_shuffle_epi32(temp, 0xAA);
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 4));
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 8));
key2 = _mm_xor_si128(key2, temp);
round_key[13] = key2;
temp = _mm_aeskeygenassist_si128(key2, 0x40);
temp = _mm_shuffle_epi32(temp, 0xFF);
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 4));
key1 = _mm_xor_si128(key1, _mm_slli_si128(key1, 8));
key1 = _mm_xor_si128(key1, temp);
round_key[14] = key1;
}
// AES-256加密单个块
__m128i aes256_encrypt_block(__m128i block, const __m128i *round_key) {
block = _mm_xor_si128(block, round_key[0]);
for (int i = 1; i < 14; i++) {
block = _mm_aesenc_si128(block, round_key[i]);
}
block = _mm_aesenclast_si128(block, round_key[14]);
return block;
}
// 明确区分加密和解密路径
void aes256_cfb_encrypt(uint8_t *ciphertext, const uint8_t *plaintext, size_t len,
const uint8_t *iv, const __m128i *round_key) {
__m128i feedback = _mm_loadu_si128((const __m128i*)iv);
size_t blocks = len / 16;
size_t remaining = len % 16;
// 处理完整块
for (size_t i = 0; i < blocks; i++) {
__m128i keystream = aes256_encrypt_block(feedback, round_key);
__m128i plain_block = _mm_loadu_si128((const __m128i*)(plaintext + i * 16));
__m128i cipher_block = _mm_xor_si128(plain_block, keystream);
_mm_storeu_si128((__m128i*)(ciphertext + i * 16), cipher_block);
// 加密时:使用生成的密文作为反馈
feedback = cipher_block;
}
// 处理部分块
if (remaining > 0) {
__m128i keystream = aes256_encrypt_block(feedback, round_key);
const uint8_t* src = plaintext + blocks * 16;
uint8_t* dst = ciphertext + blocks * 16;
for (size_t i = 0; i < remaining; i++) {
dst[i] = src[i] ^ ((uint8_t*)&keystream)[i];
}
}
}
void aes256_cfb_decrypt(uint8_t *plaintext, const uint8_t *ciphertext, size_t len,
const uint8_t *iv, const __m128i *round_key) {
__m128i feedback = _mm_loadu_si128((const __m128i*)iv);
size_t blocks = len / 16;
size_t remaining = len % 16;
// 处理完整块
for (size_t i = 0; i < blocks; i++) {
__m128i keystream = aes256_encrypt_block(feedback, round_key);
__m128i cipher_block = _mm_loadu_si128((const __m128i*)(ciphertext + i * 16));
__m128i plain_block = _mm_xor_si128(cipher_block, keystream);
_mm_storeu_si128((__m128i*)(plaintext + i * 16), plain_block);
// 解密时:使用输入的密文作为反馈
feedback = cipher_block;
}
// 处理部分块
if (remaining > 0) {
__m128i keystream = aes256_encrypt_block(feedback, round_key);
const uint8_t* src = ciphertext + blocks * 16;
uint8_t* dst = plaintext + blocks * 16;
for (size_t i = 0; i < remaining; i++) {
dst[i] = src[i] ^ ((uint8_t*)&keystream)[i];
}
}
}
// 打印十六进制数据
void print_hex(const char* label, const uint8_t* data, size_t len) {
std::cout << label << ": ";
for (size_t i = 0; i < len; i++) {
std::cout << std::hex << std::setw(2) << std::setfill('0')
<< static_cast<int>(data[i]) << " ";
}
std::cout << std::dec << "\n";
}
// 验证实现正确性
bool test_aes256_cfb() {
// 测试向量
uint8_t key[32] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
};
uint8_t iv[16] = {
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff
};
const char* plaintext = "Hello, AES-256-CFB! This is a test.";
size_t len = strlen(plaintext);
// 扩展密钥存储
__m128i round_key[15];
aes256_key_expansion(key, round_key);
uint8_t* ciphertext = new uint8_t[len];
uint8_t* decrypted = new uint8_t[len + 1];
// 加密(使用专用加密函数)
aes256_cfb_encrypt(ciphertext, (const uint8_t*)plaintext, len, iv, round_key);
// 解密(使用专用解密函数)
aes256_cfb_decrypt(decrypted, ciphertext, len, iv, round_key);
decrypted[len] = '\0';
// 验证解密结果
bool success = memcmp(plaintext, decrypted, len) == 0;
if (!success) {
std::cerr << "测试失败!\n";
std::cerr << "原始文本: " << plaintext << "\n";
std::cerr << "解密文本: " << decrypted << "\n";
print_hex("原始数据", (const uint8_t*)plaintext, len);
print_hex("解密数据", decrypted, len);
}
delete[] ciphertext;
delete[] decrypted;
return success;
}
int main() {
// 首先运行自测试
if (!test_aes256_cfb()) {
std::cerr << "实现验证失败,请检查代码!\n";
return 1;
}
// 示例密钥(256位 = 32字节)
uint8_t key[32] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
};
// 示例IV(128位 = 16字节)
uint8_t iv[16] = {
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff
};
// 测试数据
const char* plaintext = "Hello, AES-256-CFB! This is a test message for encryption and decryption.";
size_t len = strlen(plaintext);
// 输出缓冲区
uint8_t* ciphertext = new uint8_t[len];
uint8_t* decrypted = new uint8_t[len + 1]; // +1 for null terminator
// 扩展密钥存储
__m128i round_key[15];
aes256_key_expansion(key, round_key);
std::cout << "\n=== AES-256-CFB 演示 ===\n";
std::cout << "原始长度: " << len << " 字节\n";
std::cout << "原始文本: " << plaintext << "\n\n";
// 加密(使用专用加密函数)
aes256_cfb_encrypt(ciphertext, (const uint8_t*)plaintext, len, iv, round_key);
print_hex("加密结果", ciphertext, len); // 只显示前64字节
// 解密(使用专用解密函数)
aes256_cfb_decrypt(decrypted, ciphertext, len, iv, round_key);
decrypted[len] = '\0'; // 添加字符串结束符
std::cout << "解密文本: " << decrypted << "\n";
// 验证结果
if (memcmp(plaintext, decrypted, len) == 0) {
std::cout << "\n验证成功: 解密文本与原始文本匹配!\n";
} else {
std::cout << "\n错误: 解密文本与原始文本不匹配!\n";
std::cout << "原始长度: " << len << "\n";
std::cout << "解密长度: " << strlen((const char*)decrypted) << "\n";
print_hex("原始数据", (const uint8_t*)plaintext, len);
print_hex("解密数据", decrypted, len);
}
// 清理
delete[] ciphertext;
delete[] decrypted;
return 0;
}