【机器学习】Teacher-Student框架

Teacher-Student Setup是一个经典的机器学习框架,包含两个核心角色:

    • 教师模型 (Teacher Model)

      • 通常是一个更大、更强、已经训练好(或正在训练)的模型。
      • 它对问题有很好的理解,性能优秀。
      • 它的作用是为学生提供"指导"。
    • 学生模型 (Student Model)

      • 通常是一个更小、更轻量级的模型。
      • 它的目标是学习教师的能力,最终在性能上接近甚至超越教师(在特定任务上)。
      • 学生不仅从真实标签 (hard labels) 中学习,还会从教师的输出 (soft labels) 中学习。
  1. 教师如何"教"学生?------ 知识蒸馏 (Knowledge Distillation)

    这是最核心的机制:

    • Hard Labels (硬标签) :原始数据中的正确答案,比如图片是"猫",标签就是 [0, 1, 0]
    • Soft Labels (软标签) :教师模型输出的概率分布。例如,对于一张猫的图片,教师可能输出 [0.05 (狗), 0.9 (猫), 0.05 (虎)]。这个分布包含了教师的"思考过程"------它知道这张图非常像猫 ,但也有一点点像狗和虎
    • 学习过程 :学生模型的损失函数(Loss Function)通常由两部分组成:
      1. 一部分是与真实标签计算的损失(如交叉熵)。
      2. 另一部分是与教师的软标签计算的损失,目标是让学生的输出分布与教师的输出分布尽可能相似。
相关推荐
لا معنى له3 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI4 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
hh随便起个名6 小时前
力扣二叉树的三种遍历
javascript·数据结构·算法·leetcode
小a杰.6 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight6 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha7 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir7 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王7 小时前
COCO 数据集
人工智能·机器学习
Dingdangcat867 小时前
城市交通多目标检测系统:YOLO11-MAN-FasterCGLU算法优化与实战应用_3
算法·目标检测·目标跟踪
tang&8 小时前
滑动窗口:双指针的优雅舞步,征服连续区间问题的利器
数据结构·算法·哈希算法·滑动窗口