目标检测我来惹2-SPPNet

RCNN慢在哪?上千个候选区域经过卷积太耗时

RCNN解决方案:

1.减少卷积计算

2.防止图片内容变形crop/wrap

SPPNet:一张图片全部卷积计算,不要crop+wrap

映射:

要取候选区域的特征--怎么做?

image--SS--候选区域

image--CNN--特征图feature map

将候选区域映射到特征图中,得到候选区域的特征向量

SSP层:

输出大小固定的特征向量

引入了SPP-Net ,通过候选区域和特征图的映射

spp池化作用:

SPPNet相对于R-CNND的改进算法:

相关推荐
光锥智能4 小时前
从连接机器到激活知识:探寻工业互联网深水区的山钢范式
人工智能
GHL2842710904 小时前
分析式AI学习
人工智能·学习·ai编程
ujainu4 小时前
CANN仓库中的AIGC性能极限挑战:昇腾软件栈如何榨干每一瓦算力
人工智能·开源
wenzhangli74 小时前
ooderA2UI BridgeCode 深度解析:从设计原理到 Trae Solo Skill 实践
java·开发语言·人工智能·开源
brave and determined4 小时前
CANN ops-nn算子库使用教程:实现神经网络在NPU上的加速计算
人工智能·深度学习·神经网络
brave and determined4 小时前
CANN算子开发基础框架opbase完全解析
人工智能
笔画人生4 小时前
系统级整合:`ops-transformer` 在 CANN 全栈架构中的角色与实践
深度学习·架构·transformer
一枕眠秋雨>o<4 小时前
调度的艺术:CANN Runtime如何编织昇腾AI的时空秩序
人工智能
晚烛5 小时前
CANN + 物理信息神经网络(PINNs):求解偏微分方程的新范式
javascript·人工智能·flutter·html·零售
爱吃烤鸡翅的酸菜鱼5 小时前
CANN ops-math向量运算与特殊函数实现解析
人工智能·aigc