目标检测我来惹2-SPPNet

RCNN慢在哪?上千个候选区域经过卷积太耗时

RCNN解决方案:

1.减少卷积计算

2.防止图片内容变形crop/wrap

SPPNet:一张图片全部卷积计算,不要crop+wrap

映射:

要取候选区域的特征--怎么做?

image--SS--候选区域

image--CNN--特征图feature map

将候选区域映射到特征图中,得到候选区域的特征向量

SSP层:

输出大小固定的特征向量

引入了SPP-Net ,通过候选区域和特征图的映射

spp池化作用:

SPPNet相对于R-CNND的改进算法:

相关推荐
精致先生22 分钟前
RAG(检索增强生成)
人工智能·大模型·rag
老周聊大模型44 分钟前
LangChain已死?不,是时候重新思考AI工程范式了
人工智能·langchain·mcp
淦暴尼1 小时前
银行客户流失预测分析
python·深度学习·算法
Pigwantofly1 小时前
SpringAI入门及浅实践,实战 Spring‎ AI 调用大模型、提示词工程、对话记忆、Adv‎isor 的使用
java·大数据·人工智能·spring
Eloudy1 小时前
复矩阵与共轭转置矩阵乘积及其平方根矩阵
人工智能·算法·矩阵
m0_631354451 小时前
VTK开发day2:切片矩阵
人工智能·算法·矩阵
拓端研究室1 小时前
专题:2025电商增长新势力洞察报告:区域裂变、平台垄断与银发平权|附260+报告PDF、原数据表汇总下载
大数据·人工智能
go54631584651 小时前
在本地环境中运行 ‘dom-distiller‘ GitHub 库的完整指南
人工智能·深度学习·神经网络·算法·矩阵·github
KaneLogger2 小时前
一文了解提示词、提示词工程和上下文工程
人工智能·程序员
风筝超冷2 小时前
【Milvus合集】1.Milvus 的核心概念(collection、field、index、partition、segment)
人工智能·机器学习·milvus