python打卡day37

@疏锦行

知识点回顾:

  1. 过拟合的判断:测试集和训练集同步打印指标

  2. 模型的保存和加载

a. 仅保存权重

b. 保存权重和模型

c. 保存全部信息checkpoint,还包含训练状态

  1. 早停策略

**作业:**对信贷数据集训练后保存权重,加载权重后继续训练50轮,并采取早停策略

复制代码
# 保存模型权重
torch.save(model.state_dict(), 'credit_model_weights.pth')

# 加载模型权重
model.load_state_dict(torch.load('credit_model_weights.pth'))

# 设置继续训练的轮数
additional_epochs = 50

for epoch in range(additional_epochs):
    # 前向传播
    outputs = model(X_train_tensor)
    loss = criterion(outputs, y_train_tensor)

    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{additional_epochs}], Loss: {loss.item():.4f}')

# 保存继续训练后的模型权重
torch.save(model.state_dict(), 'credit_model_weights_continued.pth')
# 早停策略参数
patience = 10  # 容忍验证集损失不下降的最大轮数
best_val_loss = float('inf')
counter = 0

for epoch in range(num_epochs):
    # 训练代码
    model.train()
    outputs = model(X_train_tensor)
    train_loss = criterion(outputs, y_train_tensor)
    optimizer.zero_grad()
    train_loss.backward()
    optimizer.step()

    # 验证代码
    model.eval()
    with torch.no_grad():
        val_outputs = model(X_val_tensor)
        val_loss = criterion(val_outputs, y_val_tensor)

    print(f'Epoch [{epoch+1}/{num_epochs}], Train Loss: {train_loss.item():.4f}, Val Loss: {val_loss.item():.4f}')

    # 早停策略逻辑
    if val_loss < best_val_loss:
        best_val_loss = val_loss
        counter = 0
        # 保存最佳模型权重
        torch.save(model.state_dict(), 'best_credit_model_weights.pth')
    else:
        counter += 1
        if counter >= patience:
            print('Early stopping!')
            break
相关推荐
程序员爱钓鱼23 分钟前
Python编程实战 · 基础入门篇 | 元组(tuple)
后端·python·ipython
渲吧云渲染24 分钟前
SaaS模式重构工业软件竞争规则,助力中小企业快速实现数字化转型
大数据·人工智能·sass
程序员爱钓鱼24 分钟前
Python编程实战 · 基础入门篇 | 列表(list)
后端·python·ipython
算家云28 分钟前
DeepSeek-OCR本地部署教程:DeepSeek突破性开创上下文光学压缩,10倍效率重构文本处理范式
人工智能·计算机视觉·算家云·模型部署教程·镜像社区·deepseek-ocr
AgeClub28 分钟前
1.2亿老人需助听器:本土品牌如何以AI破局,重构巨头垄断市场?
人工智能
PPIO派欧云2 小时前
PPIO上线Qwen-VL-8B/30B、GLM-4.5-Air等多款中小尺寸模型
人工智能
御承扬2 小时前
编程素养提升之EffectivePython(Builder篇)
python·设计模式·1024程序员节
chenchihwen3 小时前
AI代码开发宝库系列:FAISS向量数据库
数据库·人工智能·python·faiss·1024程序员节
张登杰踩3 小时前
工业产品表面缺陷检测方法综述:从传统视觉到深度学习
人工智能·深度学习