python打卡day37

@疏锦行

知识点回顾:

  1. 过拟合的判断:测试集和训练集同步打印指标

  2. 模型的保存和加载

a. 仅保存权重

b. 保存权重和模型

c. 保存全部信息checkpoint,还包含训练状态

  1. 早停策略

**作业:**对信贷数据集训练后保存权重,加载权重后继续训练50轮,并采取早停策略

复制代码
# 保存模型权重
torch.save(model.state_dict(), 'credit_model_weights.pth')

# 加载模型权重
model.load_state_dict(torch.load('credit_model_weights.pth'))

# 设置继续训练的轮数
additional_epochs = 50

for epoch in range(additional_epochs):
    # 前向传播
    outputs = model(X_train_tensor)
    loss = criterion(outputs, y_train_tensor)

    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{additional_epochs}], Loss: {loss.item():.4f}')

# 保存继续训练后的模型权重
torch.save(model.state_dict(), 'credit_model_weights_continued.pth')
# 早停策略参数
patience = 10  # 容忍验证集损失不下降的最大轮数
best_val_loss = float('inf')
counter = 0

for epoch in range(num_epochs):
    # 训练代码
    model.train()
    outputs = model(X_train_tensor)
    train_loss = criterion(outputs, y_train_tensor)
    optimizer.zero_grad()
    train_loss.backward()
    optimizer.step()

    # 验证代码
    model.eval()
    with torch.no_grad():
        val_outputs = model(X_val_tensor)
        val_loss = criterion(val_outputs, y_val_tensor)

    print(f'Epoch [{epoch+1}/{num_epochs}], Train Loss: {train_loss.item():.4f}, Val Loss: {val_loss.item():.4f}')

    # 早停策略逻辑
    if val_loss < best_val_loss:
        best_val_loss = val_loss
        counter = 0
        # 保存最佳模型权重
        torch.save(model.state_dict(), 'best_credit_model_weights.pth')
    else:
        counter += 1
        if counter >= patience:
            print('Early stopping!')
            break
相关推荐
肥猪猪爸28 分钟前
BP神经网络对时序数据进行分类
人工智能·深度学习·神经网络·算法·机器学习·分类·时序数据
Keep learning!31 分钟前
深度学习入门代码详细注释-ResNet18分类蚂蚁蜜蜂
人工智能·深度学习·分类
Liudef061 小时前
神经辐射场 (NeRF):重构三维世界的AI新视角
人工智能·重构
Dxy12393102162 小时前
Python PDFplumber详解:从入门到精通的PDF处理指南
开发语言·python·pdf
音视频牛哥2 小时前
打造实时AI视觉系统:OpenCV结合RTSP|RTMP播放器的工程落地方案
人工智能·opencv·计算机视觉·大牛直播sdk·rtsp播放器·rtmp播放器·android rtmp
归去_来兮3 小时前
生成式对抗网络(GAN)模型原理概述
人工智能·深度学习·生成对抗网络
在努力的韩小豪4 小时前
如何从0开始构建自己的第一个AI应用?(Prompt工程、Agent自定义、Tuning)
人工智能·python·llm·prompt·agent·ai应用·mcp
云卓SKYDROID4 小时前
无人机环境感知系统运行与技术难点!
人工智能·计算机视觉·目标跟踪·无人机·科普·高科技·云卓科技
网安INF4 小时前
深度学习中的 Seq2Seq 模型与注意力机制
人工智能·深度学习·神经网络·注意力机制·seq2seq
火山引擎开发者社区4 小时前
ByteBrain x 清华 VLDB25|时序多模态大语言模型 ChatTS
人工智能·语言模型·自然语言处理