python打卡day37

@疏锦行

知识点回顾:

  1. 过拟合的判断:测试集和训练集同步打印指标

  2. 模型的保存和加载

a. 仅保存权重

b. 保存权重和模型

c. 保存全部信息checkpoint,还包含训练状态

  1. 早停策略

**作业:**对信贷数据集训练后保存权重,加载权重后继续训练50轮,并采取早停策略

复制代码
# 保存模型权重
torch.save(model.state_dict(), 'credit_model_weights.pth')

# 加载模型权重
model.load_state_dict(torch.load('credit_model_weights.pth'))

# 设置继续训练的轮数
additional_epochs = 50

for epoch in range(additional_epochs):
    # 前向传播
    outputs = model(X_train_tensor)
    loss = criterion(outputs, y_train_tensor)

    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{additional_epochs}], Loss: {loss.item():.4f}')

# 保存继续训练后的模型权重
torch.save(model.state_dict(), 'credit_model_weights_continued.pth')
# 早停策略参数
patience = 10  # 容忍验证集损失不下降的最大轮数
best_val_loss = float('inf')
counter = 0

for epoch in range(num_epochs):
    # 训练代码
    model.train()
    outputs = model(X_train_tensor)
    train_loss = criterion(outputs, y_train_tensor)
    optimizer.zero_grad()
    train_loss.backward()
    optimizer.step()

    # 验证代码
    model.eval()
    with torch.no_grad():
        val_outputs = model(X_val_tensor)
        val_loss = criterion(val_outputs, y_val_tensor)

    print(f'Epoch [{epoch+1}/{num_epochs}], Train Loss: {train_loss.item():.4f}, Val Loss: {val_loss.item():.4f}')

    # 早停策略逻辑
    if val_loss < best_val_loss:
        best_val_loss = val_loss
        counter = 0
        # 保存最佳模型权重
        torch.save(model.state_dict(), 'best_credit_model_weights.pth')
    else:
        counter += 1
        if counter >= patience:
            print('Early stopping!')
            break
相关推荐
hay_lee2 分钟前
渐进式披露:Agent Skills让AI开发标准化
人工智能
阿里云云原生3 分钟前
探秘 AgentRun丨动态下发+权限隔离,重构 AI Agent 安全体系
人工智能·安全·阿里云·重构·agentrun
程序员杰哥6 分钟前
Chrome浏览器+Postman做接口测试
自动化测试·软件测试·python·测试工具·测试用例·接口测试·postman
ZCXZ12385296a8 分钟前
YOLO11-ASF-P2模型实现蚕桑业健康状态识别完整教程
python
veminhe8 分钟前
人工智能学习笔记
人工智能
苍何fly8 分钟前
用腾讯版 Claude Code 做了个小红书封面图 Skills,已开源!
人工智能·经验分享
hnult12 分钟前
全功能学练考证在线考试平台,赋能技能认证
大数据·人工智能·笔记·课程设计
gang_unerry12 分钟前
量子退火与机器学习(4): 大模型 1-bit 量子化中的 QEP 与 QQA 准量子退火技术
人工智能·python·机器学习·量子计算
青瓷程序设计23 分钟前
【交通标志识别系统】python+深度学习+算法模型+Resnet算法+人工智能+2026计算机毕设项目
人工智能·python·深度学习
Mr.huang25 分钟前
RNN系列模型演进及其解决的问题
人工智能·rnn·lstm