论文笔记 <交通灯> IntelliLight:一种用于智能交通灯控制的强化学习方法

今天读的是IntelliLight:一种用于智能交通灯控制的强化学习方法,其核心创新点在于解决了传统方法在​​真实动态交通环境​ ​下的不足,并通过​​模型结构优化​ ​和​​训练机制改进​​提升性能。

讲解一下我认为的创新点:

传统方法的缺陷​​:固定时序控制(Fixed-time)和基于规则的方法(如SOTL)无法适应动态交通流;已有强化学习方法大多在仿真环境中测试,未考虑真实交通的复杂性和样本不平衡问题。

  • 关键挑战​
    • ​环境表征​:如何有效融合交通状态(车流位置、等待时间等)和信号灯相位(Phase)。
    • ​决策偏差​:相同车流条件下,不同相位需不同决策,但传统DQN将相位作为普通特征,导致决策混淆。
    • ​样本不平衡​:真实交通中不同相位-动作组合出现频率差异大,影响训练稳定性。

为了解决相位决策混淆问题,他这里有的一个创新方法:​

​(1) Phase Gate(相位门控):
主要就是面对不同的 相位(如东西向绿灯 P=0 或南北向绿灯 P=1)激活不同的全连接层分支。

他的输入特征为:融合图像特征(CNN提取车流位置) + 传统特征(排队长度 L、等待时间 W、车辆数 V、相位 P)。

效果就是相同车流下,不同相位能够触发独立决策逻辑,避免错误动作(如该保持相位时误切换)。

还有就是面对真实交通中样本不平衡问题(如某些相位-动作组合样本稀少)毕竟强化学习只是在仿真里面训练,面对真实环境还有差距。

他提出的创新方法为:

(2)Memory Palace(记忆宫殿)​:

他为为每个相位-动作组合(如 (P=0, a=保持)(P=1, a=切换))建立独立记忆池。这样就能够保证训练时从各记忆池​​均匀采样​​,确保低频组合不被忽略。

这样能提升模型对罕见交通场景的适应能力,减少决策偏差。

面对仿真和真实环境的差距,他使用真实数据来训练。

(3) 真实数据驱动的训练与评估

使用济南市 ​​1,704个摄像头​​ 的31天真实数据(4.05亿条车辆记录),覆盖动态交通流(高峰/非高峰、工作日/周末)。

并且他的奖励函数可以参考下:

奖励 = w1*总排队长度 + w2*总等待时间 + w3*信号切换惩罚 + w4*总延误 + w5*通过车辆数 + w6*总通行时间

还有就是他的状态表示:

使用图像特征和传统特征:

图像特征:车流位置矩阵 M → CNN提取空间信息。

传统特征:各车道排队长度 L_i、车辆数 V_i、平均等待时间 W_i、当前相位 P_c、下一相位 P_n

​动作空间为 ​二值决策(a=0 保持当前相位,a=1 切换相位)

​训练框架​ ​:分为​​离线阶段​ ​:用固定时序策略收集初始样本。和​​在线阶段​ ​:ε-贪婪策略交互更新(ε=0.05),定期从记忆宫殿采样更新DQN。

总结:

我认为以后比赛最值得尝试的就是他的相位门控机制,能够解决状态-动作混淆问题。

还有记忆宫殿,分桶存储样本解决不平衡问题,能够提升鲁棒性。

相关推荐
Jamence4 小时前
多模态大语言模型arxiv论文略读(153)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
莫彩4 小时前
【大模型推理论文阅读】Enhancing Latent Computation in Transformerswith Latent Tokens
论文阅读·人工智能·语言模型
崔高杰4 小时前
微调性能赶不上提示工程怎么办?Can Gradient Descent Simulate Prompting?——论文阅读笔记
论文阅读·人工智能·笔记·语言模型
张较瘦_9 小时前
[论文阅读] 人工智能 | 5C提示词框架的研究
论文阅读·人工智能
Jamence1 天前
多模态大语言模型arxiv论文略读(155)
论文阅读·人工智能·计算机视觉·语言模型·论文笔记
Jamence1 天前
多模态大语言模型arxiv论文略读(156)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
quintus05051 天前
【论文阅读】ARM: Adaptive Reasoning Model
论文阅读·语言模型
不是吧这都有重名2 天前
[论文阅读]VGGFace2: A dataset for recognising faces across pose and age
论文阅读
Jamence2 天前
多模态大语言模型arxiv论文略读(151)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
m0_743106462 天前
【论文笔记】BlockGaussian:巧妙解决大规模场景重建中的伪影问题
论文阅读·计算机视觉·3d·aigc·几何学