论文笔记 <交通灯> IntelliLight:一种用于智能交通灯控制的强化学习方法

今天读的是IntelliLight:一种用于智能交通灯控制的强化学习方法,其核心创新点在于解决了传统方法在​​真实动态交通环境​ ​下的不足,并通过​​模型结构优化​ ​和​​训练机制改进​​提升性能。

讲解一下我认为的创新点:

传统方法的缺陷​​:固定时序控制(Fixed-time)和基于规则的方法(如SOTL)无法适应动态交通流;已有强化学习方法大多在仿真环境中测试,未考虑真实交通的复杂性和样本不平衡问题。

  • 关键挑战​
    • ​环境表征​:如何有效融合交通状态(车流位置、等待时间等)和信号灯相位(Phase)。
    • ​决策偏差​:相同车流条件下,不同相位需不同决策,但传统DQN将相位作为普通特征,导致决策混淆。
    • ​样本不平衡​:真实交通中不同相位-动作组合出现频率差异大,影响训练稳定性。

为了解决相位决策混淆问题,他这里有的一个创新方法:​

​(1) Phase Gate(相位门控):
主要就是面对不同的 相位(如东西向绿灯 P=0 或南北向绿灯 P=1)激活不同的全连接层分支。

他的输入特征为:融合图像特征(CNN提取车流位置) + 传统特征(排队长度 L、等待时间 W、车辆数 V、相位 P)。

效果就是相同车流下,不同相位能够触发独立决策逻辑,避免错误动作(如该保持相位时误切换)。

还有就是面对真实交通中样本不平衡问题(如某些相位-动作组合样本稀少)毕竟强化学习只是在仿真里面训练,面对真实环境还有差距。

他提出的创新方法为:

(2)Memory Palace(记忆宫殿)​:

他为为每个相位-动作组合(如 (P=0, a=保持)(P=1, a=切换))建立独立记忆池。这样就能够保证训练时从各记忆池​​均匀采样​​,确保低频组合不被忽略。

这样能提升模型对罕见交通场景的适应能力,减少决策偏差。

面对仿真和真实环境的差距,他使用真实数据来训练。

(3) 真实数据驱动的训练与评估

使用济南市 ​​1,704个摄像头​​ 的31天真实数据(4.05亿条车辆记录),覆盖动态交通流(高峰/非高峰、工作日/周末)。

并且他的奖励函数可以参考下:

奖励 = w1*总排队长度 + w2*总等待时间 + w3*信号切换惩罚 + w4*总延误 + w5*通过车辆数 + w6*总通行时间

还有就是他的状态表示:

使用图像特征和传统特征:

图像特征:车流位置矩阵 M → CNN提取空间信息。

传统特征:各车道排队长度 L_i、车辆数 V_i、平均等待时间 W_i、当前相位 P_c、下一相位 P_n

​动作空间为 ​二值决策(a=0 保持当前相位,a=1 切换相位)

​训练框架​ ​:分为​​离线阶段​ ​:用固定时序策略收集初始样本。和​​在线阶段​ ​:ε-贪婪策略交互更新(ε=0.05),定期从记忆宫殿采样更新DQN。

总结:

我认为以后比赛最值得尝试的就是他的相位门控机制,能够解决状态-动作混淆问题。

还有记忆宫殿,分桶存储样本解决不平衡问题,能够提升鲁棒性。

相关推荐
张较瘦_3 小时前
[论文阅读] AI + 编码 | Agint:让LLM编码代理告别“混乱”,用图编译打通自然语言到可执行代码的任督二脉
论文阅读·人工智能
iiiiii118 小时前
【论文阅读笔记】IDAQ:离线元强化学习中的分布内在线适应
论文阅读·人工智能·笔记·学习·算法·机器学习·强化学习
小明_GLC8 小时前
DeepSeek-Math-V2论文阅读
论文阅读
张较瘦_10 小时前
[论文阅读] AI + 软件工程 | Python/Java/Go通用!依赖感知分层模型DHCS让代码注释更智能
论文阅读
empti_10 小时前
《大规模 3D 城市布局的语义与结构引导可控生成》翻译
论文阅读·笔记
张较瘦_11 小时前
[论文阅读] AI + 软件工程 | 首测GPT-4.1/Claude Sonnet 4适配能力:LLM多智能体在SE领域的潜力与局限
论文阅读·人工智能·软件工程
DuHz11 小时前
通感一体化(ISAC)波形设计的实验验证研究——论文阅读
论文阅读·算法·信息与通信·毫米波雷达
DuHz3 天前
无线通信与雷达感知融合的波形设计与信号处理——论文阅读(上)
论文阅读·信号处理
DuHz3 天前
无线通信与雷达感知融合的波形设计与信号处理——论文阅读(下)
论文阅读·汽车·信息与通信·信号处理
张较瘦_4 天前
[论文阅读] AI + 软件工程 | LLM救场Serverless开发!SlsReuse框架让函数复用率飙升至91%,还快了44%
论文阅读·人工智能·软件工程