深度学习与神经网络 | 邱锡鹏 | 第五章学习笔记 卷积神经网络

五、卷积神经网络

我们希望有一个新的网络可以提取局部不变性

文章目录

  • 五、卷积神经网络
    • [5.1 卷积](#5.1 卷积)
    • [5.2 卷积神经网络](#5.2 卷积神经网络)
    • [5.3 其他卷积](#5.3 其他卷积)
    • [5.4 经典卷积网络](#5.4 经典卷积网络)
    • [5.5 卷积网络的应用](#5.5 卷积网络的应用)
    • [5.6 应用到文本数据](#5.6 应用到文本数据)

5.1 卷积

前两个输入都不卷,从第三个开始卷,因为滤波器的长度是3

每次选定三个数卷,比如前三个,1,1,2

2* (-1) + 1*0+1*1= -1

然后根据公式就是如上计算,就是滤波器的第三个对应当前选定的三个值的第一个,第二个对第二个,第一个对第三个,其实就是倒着来的,后面的也都是如此

然后可以看到,输入有7个,输出有5个,滤波器大小是3,那么关系就是7-3+1=5

也就是n-k+1=5

零填充很常用,因为这个可以让输入和输出长度相同

比如图中输入是7,滤波器是3,输出本来应该是5,现在零填空P=1,那就是补了两个零,表面上输入好像成9了,这么一算,输出就是7,但实际上输入还是原来的7,因为那两个0是补进去的

其实P=(k-1)/2,也就是输入会补k-1个0

5-3+1=3,依旧满足上面那个规则

5.2 卷积神经网络

用卷积核代替全连接,原来每个连接都是一个参数,现在换成卷积核,这里卷积核是3(滤波器大小),所以参数也就是3个,再加上一个偏置b,一共是4个,偏置也是共享的

而且这个参数数量和输入的神经元数量无关

不反着来正着来就是互相关,即w1对x1,w2对x2,一般不做特殊说明就是互相关

D就是通道数,在右边这张图里面就是3,MN是原来的大小

划分成区域就可以显著降低神经元个数了,原来4*4变成了2*2

划分成4个互不相交的区域以后,怎么汇聚 可以是平均值或者最大值或者其他的规则

5.3 其他卷积

空洞其实就是插入0,把3*3弄成5*5的

5.4 经典卷积网络

直连边会让求导会有一个恒等的1,也就是如果想让层数深的话,直接相连的边必不可少

5.5 卷积网络的应用

5.6 应用到文本数据

相关推荐
Teacher.chenchong31 分钟前
PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化技术
pytorch·深度学习·分类
丰年稻香32 分钟前
神经网络反向传播中的学习率:从理论到实践的全面解析
人工智能·神经网络·学习
咩?1 小时前
深度学习o
深度学习
Dyanic1 小时前
FreeFusion:基于交叉重构学习的红外与可见光图像融合
学习·重构
软件算法开发2 小时前
基于蜣螂优化的LSTM深度学习网络模型(DBO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·dbo-lstm·蜣螂优化·一维时间序列预测
网安INF2 小时前
【论文阅读】-《Attention Is All You Need》(Transformer)
论文阅读·人工智能·深度学习·机器学习·transformer
wan5555cn2 小时前
无人机表演行业二手设备市场与性价比分析
笔记·深度学习·音视频·无人机
leo_yu_yty3 小时前
Mysql DBA学习笔记(MVCC)
学习·mysql·dba
AI悦创|编程1v13 小时前
00-为什么要系统学习正则表达式?
学习·正则表达式·python一对一辅导·python一对一教学
en-route4 小时前
从零开始学神经网络——前馈神经网络
人工智能·深度学习·神经网络