深度学习与神经网络 | 邱锡鹏 | 第五章学习笔记 卷积神经网络

五、卷积神经网络

我们希望有一个新的网络可以提取局部不变性

文章目录

  • 五、卷积神经网络
    • [5.1 卷积](#5.1 卷积)
    • [5.2 卷积神经网络](#5.2 卷积神经网络)
    • [5.3 其他卷积](#5.3 其他卷积)
    • [5.4 经典卷积网络](#5.4 经典卷积网络)
    • [5.5 卷积网络的应用](#5.5 卷积网络的应用)
    • [5.6 应用到文本数据](#5.6 应用到文本数据)

5.1 卷积

前两个输入都不卷,从第三个开始卷,因为滤波器的长度是3

每次选定三个数卷,比如前三个,1,1,2

2* (-1) + 1*0+1*1= -1

然后根据公式就是如上计算,就是滤波器的第三个对应当前选定的三个值的第一个,第二个对第二个,第一个对第三个,其实就是倒着来的,后面的也都是如此

然后可以看到,输入有7个,输出有5个,滤波器大小是3,那么关系就是7-3+1=5

也就是n-k+1=5

零填充很常用,因为这个可以让输入和输出长度相同

比如图中输入是7,滤波器是3,输出本来应该是5,现在零填空P=1,那就是补了两个零,表面上输入好像成9了,这么一算,输出就是7,但实际上输入还是原来的7,因为那两个0是补进去的

其实P=(k-1)/2,也就是输入会补k-1个0

5-3+1=3,依旧满足上面那个规则

5.2 卷积神经网络

用卷积核代替全连接,原来每个连接都是一个参数,现在换成卷积核,这里卷积核是3(滤波器大小),所以参数也就是3个,再加上一个偏置b,一共是4个,偏置也是共享的

而且这个参数数量和输入的神经元数量无关

不反着来正着来就是互相关,即w1对x1,w2对x2,一般不做特殊说明就是互相关

D就是通道数,在右边这张图里面就是3,MN是原来的大小

划分成区域就可以显著降低神经元个数了,原来4*4变成了2*2

划分成4个互不相交的区域以后,怎么汇聚 可以是平均值或者最大值或者其他的规则

5.3 其他卷积

空洞其实就是插入0,把3*3弄成5*5的

5.4 经典卷积网络

直连边会让求导会有一个恒等的1,也就是如果想让层数深的话,直接相连的边必不可少

5.5 卷积网络的应用

5.6 应用到文本数据

相关推荐
可触的未来,发芽的智生20 分钟前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
孤狼灬笑1 小时前
深度学习经典分类(算法分析与案例)
rnn·深度学习·算法·cnn·生成模型·fnn
Element_南笙1 小时前
吴恩达新课程:Agentic AI(笔记2)
数据库·人工智能·笔记·python·深度学习·ui·自然语言处理
星期天要睡觉2 小时前
深度学习——循环神经网络(RNN)实战项目:基于PyTorch的文本情感分析
人工智能·python·rnn·深度学习·神经网络
立志成为大牛的小牛2 小时前
数据结构——二十三、并查集的终极优化(王道408)
开发语言·数据结构·笔记·学习·程序人生·考研
QT 小鲜肉3 小时前
【个人成长笔记】Qt Creator快捷键终极指南:从入门到精通
开发语言·c++·笔记·qt·学习·学习方法
星期天要睡觉3 小时前
深度学习——循环神经网络(RNN)
人工智能·python·rnn·深度学习·神经网络
Blossom.1184 小时前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
java1234_小锋4 小时前
TensorFlow2 Python深度学习 - 循环神经网络(LSTM)示例
python·rnn·深度学习·tensorflow2