实用机器学习

实用机器学习

文章目录

监督学习

  1. 分类
  2. 回归

Basic Concepts of Supervised Learning

Sample,example, instance

Features, representations, predictiors

When should we use ML

What is a typical pipline of ML

Define A ML problem -> Construct Dataset -> Transform data &get features -> Design & train a model -> Use the model to predict

A toy example

  1. Define a ML problem

  2. Construct dataset

  3. Transform data

  4. Design % train a model(Training)

  5. Use the model to predict

改进

Generalization 泛化

泛化:测试集上的表现

bias:

Variance:

Define a ML problem

无监督学习

  1. 聚类
  2. 降维
相关推荐
lxmyzzs34 分钟前
pyqt5无法显示opencv绘制文本和掩码信息
python·qt·opencv
HuggingFace39 分钟前
开源开发者须知:欧盟《人工智能法案》对通用人工智能模型的最新要求
人工智能
萧鼎2 小时前
Python pyzmq 库详解:从入门到高性能分布式通信
开发语言·分布式·python
媒体人8882 小时前
GEO 优化专家孟庆涛:技术破壁者重构 AI 时代搜索逻辑
大数据·人工智能
小菜AI科技2 小时前
Windsurf 评测:这款 人工智能 IDE 是你需要的颠覆性工具吗?
人工智能
RaymondZhao342 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
zhangfeng11332 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
yujkss2 小时前
Python脚本每天爬取微博热搜-终版
开发语言·python
yzx9910132 小时前
小程序开发APP
开发语言·人工智能·python·yolo
AKAMAI3 小时前
通过自动化本地计算磁盘与块存储卷加密保护数据安全
人工智能·云计算