实用机器学习

实用机器学习

文章目录

监督学习

  1. 分类
  2. 回归

Basic Concepts of Supervised Learning

Sample,example, instance

Features, representations, predictiors

When should we use ML

What is a typical pipline of ML

Define A ML problem -> Construct Dataset -> Transform data &get features -> Design & train a model -> Use the model to predict

A toy example

  1. Define a ML problem

  2. Construct dataset

  3. Transform data

  4. Design % train a model(Training)

  5. Use the model to predict

改进

Generalization 泛化

泛化:测试集上的表现

bias:

Variance:

Define a ML problem

无监督学习

  1. 聚类
  2. 降维
相关推荐
人工智能AI技术2 小时前
10亿美元合作启发:AIGC正版IP应用开发,迪士尼+OpenAI技术拆解
人工智能
光羽隹衡3 小时前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
莫非王土也非王臣3 小时前
深度学习之对比学习
人工智能·深度学习·学习
AI_56783 小时前
Selenium+Python可通过 元素定位→操作模拟→断言验证 三步实现Web自动化测试
服务器·人工智能·python
冰西瓜6003 小时前
国科大高级人工智能期末复习(四)联结主义(下)——深度学习
人工智能·深度学习
蒜香拿铁3 小时前
【第三章】python算数运算符
python
檐下翻书1733 小时前
世界模型:AI理解物理空间的关键一步
人工智能
2013092416273 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
InterestOriented3 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
Mark_Aussie4 小时前
ADALog 日志异常检测
人工智能