实用机器学习

实用机器学习

文章目录

监督学习

  1. 分类
  2. 回归

Basic Concepts of Supervised Learning

Sample,example, instance

Features, representations, predictiors

When should we use ML

What is a typical pipline of ML

Define A ML problem -> Construct Dataset -> Transform data &get features -> Design & train a model -> Use the model to predict

A toy example

  1. Define a ML problem

  2. Construct dataset

  3. Transform data

  4. Design % train a model(Training)

  5. Use the model to predict

改进

Generalization 泛化

泛化:测试集上的表现

bias:

Variance:

Define a ML problem

无监督学习

  1. 聚类
  2. 降维
相关推荐
小白银子3 小时前
零基础从头教学Linux(Day 52)
linux·运维·服务器·python·python3.11
wb043072014 小时前
性能优化实战:基于方法执行监控与AI调用链分析
java·人工智能·spring boot·语言模型·性能优化
AAA小肥杨4 小时前
基于k8s的Python的分布式深度学习训练平台搭建简单实践
人工智能·分布式·python·ai·kubernetes·gpu
lichong9516 小时前
Git 检出到HEAD 再修改提交commit 会消失解决方案
java·前端·git·python·github·大前端·大前端++
Tiny番茄6 小时前
31.下一个排列
数据结构·python·算法·leetcode
mit6.8246 小时前
[Agent可视化] 配置系统 | 实现AI模型切换 | 热重载机制 | fsnotify库(go)
开发语言·人工智能·golang
Percent_bigdata7 小时前
百分点科技发布中国首个AI原生GEO产品Generforce,助力品牌决胜AI搜索新时代
人工智能·科技·ai-native
Gloria_niki7 小时前
YOLOv4 学习总结
人工智能·计算机视觉·目标跟踪
小白学大数据7 小时前
实战:Python爬虫如何模拟登录与维持会话状态
开发语言·爬虫·python
FriendshipT7 小时前
目标检测:使用自己的数据集微调DEIMv2进行物体检测
人工智能·pytorch·python·目标检测·计算机视觉