实用机器学习

实用机器学习

文章目录

监督学习

  1. 分类
  2. 回归

Basic Concepts of Supervised Learning

Sample,example, instance

Features, representations, predictiors

When should we use ML

What is a typical pipline of ML

Define A ML problem -> Construct Dataset -> Transform data &get features -> Design & train a model -> Use the model to predict

A toy example

  1. Define a ML problem

  2. Construct dataset

  3. Transform data

  4. Design % train a model(Training)

  5. Use the model to predict

改进

Generalization 泛化

泛化:测试集上的表现

bias:

Variance:

Define a ML problem

无监督学习

  1. 聚类
  2. 降维
相关推荐
ZzzZ314159268 分钟前
【无标题】
人工智能
Hcoco_me11 分钟前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec
哈__11 分钟前
CodeLlama与昇腾NPU的实践之旅
人工智能·gitcode·sglang
GMICLOUD26 分钟前
GMI Cloud@AI周报 | MiniMax 叩响港股大门;智谱 GLM-4.7 开源
人工智能·ai资讯
0x000731 分钟前
进击的智谱 - GLM 4.7 双旦大礼
人工智能
_codemonster39 分钟前
AI大模型入门到实战系列--使用Pytorch实现transformer文本分类
人工智能·pytorch·transformer
Elastic 中国社区官方博客1 小时前
Elasticsearch:在 X-mas 吃一些更健康的东西
android·大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索
DKHZ_OfficeAI1 小时前
开启AI办公新时代:Office+WPS双平台智能助手全面赋能
人工智能
Coder_Boy_1 小时前
基于SpringAI的智能平台基座开发-(四)
java·人工智能·spring boot·langchain·springai
智航GIS1 小时前
5.1 if语句基础
开发语言·python