OpenCV哈希算法------Marr-Hildreth 边缘检测哈希算法

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

该类实现了 Marr-Hildreth 边缘检测哈希算法(Marr-Hildreth Hash),用于图像相似性比较。它基于 Marr-Hildreth 边缘检测器(也称为 Laplacian of Gaussian, LoG)提取图像边缘信息,并生成二进制哈希值。

这种哈希方法对图像中的边缘结构非常敏感,适合用于:

  • 图像检索
  • 图像去重
  • 检测图像是否经过裁剪、旋转或轻微变形

公共成员函数

  1. compute(InputArray inputArr, OutputArray outputArr)

计算输入图像的 Marr-Hildreth 哈希值。

参数说明:

参数 类型 描述
inputArr InputArray 输入图像,支持灰度图 (CV_8UC1) 或彩色图 (CV_8UC3)
outputArr OutputArray 输出的哈希值,类型为 CV_8U 的一维 Mat
示例:
cpp 复制代码
Mat hash;
marr_hash->compute(image, hash);
  1. compare(const Mat& hashOne, const Mat& hashTwo)

比较两个哈希值之间的差异,返回 汉明距离(Hamming Distance)。

参数说明:

参数 类型 描述
hashOne const Mat& 第一个哈希值
hashTwo const Mat& 第二个哈希值
返回值:
  • 返回两个哈希之间的 汉明距离
  • 值越小表示图像越相似

示例:

cpp 复制代码
double distance = marr_hash->compare(hash1, hash2);
if (distance < threshold) {
    std::cout << "图像相似" << std::endl;
}

代码示例

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/img_hash.hpp>
#include <iostream>

using namespace cv;
using namespace cv::img_hash;
using namespace std;

int main()
{
    // 加载图像(支持彩色图或灰度图)
    Mat img1 = imread("/media/dingxin/data/study/OpenCV/sources/images/img1.jpg", IMREAD_COLOR);
    Mat img2 = imread("/media/dingxin/data/study/OpenCV/sources/images/img2.jpg", IMREAD_COLOR);

    if (img1.empty() || img2.empty()) {
        cerr << "无法加载图像!" << endl;
        return -1;
    }

    // 创建 MarrHildrethHash 对象(可选参数 sigma)
    Ptr<MarrHildrethHash> marr_hash = MarrHildrethHash::create(1.2); // sigma = 1.2

    // 计算哈希值
    Mat hash1, hash2;
    marr_hash->compute(img1, hash1);
    marr_hash->compute(img2, hash2);

    // 比较哈希值(返回汉明距离)
    double distance = marr_hash->compare(hash1, hash2);
    cout << "汉明距离: " << distance << endl;

    if (distance < 10) {  // 可根据实际调整阈值
        cout << "图像非常相似!" << endl;
    } else {
        cout << "图像不相似。" << endl;
    }

    return 0;
}

运行结果

bash 复制代码
汉明距离: 9
图像非常相似!
相关推荐
AI科技几秒前
原创音乐人提升写歌数量,AI编曲软件实现创作周期大幅缩短
人工智能
亲爱的非洲野猪1 分钟前
从约束到互联:LLM生态中Rules、Tools、Skills与MCP的演进史
人工智能
jay神2 分钟前
基于MobileNet花卉识别系统
人工智能·深度学习·计算机视觉·毕业设计·花卉识别
云卓SKYDROID2 分钟前
无人机故障诊断技术模块要点!
人工智能·无人机·高科技·云卓科技·故障模块
m0_603888712 分钟前
VEQ Modality-Adaptive Quantization for MoE Vision-Language Models
人工智能·ai·语言模型·自然语言处理·论文速览
智驱力人工智能3 分钟前
无人机目标检测 低空安全治理的工程实践与价值闭环 无人机缺陷识别 农业无人机作物长势分析系统 森林防火无人机火点实时识别
人工智能·opencv·安全·yolo·目标检测·无人机·边缘计算
zhangfeng11334 分钟前
大语言模型llm 量化模型 跑在 边缘设备小显存显卡 GGUF GGML PyTorch (.pth, .bin, SafeTensors)
人工智能·pytorch·深度学习·语言模型
纤纡.4 分钟前
深度学习环境搭建:CUDA+PyTorch+TorchVision+Torchaudio 一站式安装教程
人工智能·pytorch·深度学习
方见华Richard5 分钟前
《认知几何学:思维如何弯曲意义空间》补充材料
人工智能·经验分享·交互·原型模式·空间计算
石去皿6 分钟前
一款轻量级桌面级图片批量压缩工具,专为高效减小图片文件体积而设计,面向latex编译速度优化
网络·人工智能·工具·压缩图片